Temporal Semi-discretizations of a Backward Semilinear Stochastic Evolution Equation

被引:0
|
作者
Li, Binjie [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2023年 / 88卷 / 02期
基金
中国国家自然科学基金;
关键词
Backward semilinear stochastic evolution equation; Brownian motion; Discretization; Stochastic linear quadratic control; PARTIAL-DIFFERENTIAL-EQUATIONS; MAXIMUM PRINCIPLE; CONVERGENCE RATES; ADAPTED SOLUTION; SCHEME; APPROXIMATION; SPDES;
D O I
10.1007/s00245-023-10014-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the convergence of three temporal semi-discretizations for a backward semilinear stochastic evolution equation. For general terminal value and general coefficient with Lipschitz continuity, the convergence of the first two temporal semi-discretizations is established, and an explicit convergence rate is derived for the third temporal semi-discretization. The third temporal semi-discretization is applied to a general stochastic linear quadratic control problem, and the convergence of a temporally semi-discrete approximation to the optimal control is established.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Temporal Semi-discretizations of a Backward Semilinear Stochastic Evolution Equation
    Binjie Li
    Xiaoping Xie
    Applied Mathematics & Optimization, 2023, 88
  • [2] Integrable semi-discretizations of the reduced Ostrovsky equation
    Feng, Bao-Feng
    Maruno, Ken-ichi
    Ohta, Yasuhiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (13)
  • [3] Control Lie Algebras of semi-discretizations of the Schroedinger equation
    Kime, Katherine A.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 643 - 650
  • [4] Integrable semi-discretizations of the AKNS equation and the Hirota-Satsuma equation
    Hu, XB
    Tam, HW
    NONLINEAR EVOLUTION EQUATIONS AND DYNAMICAL SYSTEMS, 2003, : 49 - 60
  • [5] Positivity for Convective Semi-discretizations
    Imre Fekete
    David I. Ketcheson
    Lajos Lóczi
    Journal of Scientific Computing, 2018, 74 : 244 - 266
  • [6] Positivity for Convective Semi-discretizations
    Fekete, Imre
    Ketcheson, David I.
    Loczi, Lajos
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 244 - 266
  • [7] DYNAMICS OF SEMI-DISCRETIZATIONS OF THE DEFOCUSING NONLINEAR SCHRODINGER-EQUATION
    ABLOWITZ, MJ
    HERBST, BM
    WEIDEMAN, JAC
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (04) : 539 - 552
  • [8] ADAPTED SOLUTION OF A BACKWARD SEMILINEAR STOCHASTIC-EVOLUTION EQUATION
    YING, H
    SHIGE, P
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1991, 9 (04) : 445 - 459
  • [9] Short wave limit of the Novikov equation and its integrable semi-discretizations
    Ma, Ruyun
    Zhang, Yujuan
    Xiong, Na
    Feng, Bao-Feng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (49)
  • [10] Boundary observability for the space semi-discretizations of the 1-D wave equation
    Infante, JA
    Zuazua, E
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (02): : 407 - 438