Semantic-driven dimension reduction for wireless internet of things

被引:0
|
作者
Han, Yue [1 ]
Zhang, Yue [1 ]
Wang, Jun [1 ]
机构
[1] Ludong Univ, Coll Math & Stat Sci, Yantai 264025, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent wireless network; Semantic-driven dimension reduction; Feature selection; Mahalanobis distance; KRUSKAL-WALLIS TEST; CLASSIFICATION;
D O I
10.1016/j.iot.2024.101138
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, mobile communication and artificial intelligence technologies have been widely used in the construction of wireless networks, bringing about a dramatic increase in data size. Existing wireless networks usually consist of a large number of nodes, with the potential risk of the curse of dimensionality. High dimensionality plays a negative role in learning effectiveness and efficiency, which should have been studied in depth but is neglected in existing wireless network research. In order to generate effective semantic -driven efficiency, this paper focuses on semantic -driven dimensionality reduction for wireless Internet of Things. Specifically, this paper introduces a series of feature selection techniques centered on Mahalanobis distance for dimensionality reduction, which helps to select discriminative features by measuring the effectiveness of semantic preferences and semantic -driven efficiency through Mahalanobis distance. Experiments on a set of wireless sensor data and various high -dimensional microarray data validate the superior performance of the proposed method.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Semantic-Driven Crossmodal Fusion for Multimodal Sentiment Analysis
    Liu, Pingshan
    Wang, Zhaoyang
    Huang, Fu
    [J]. International Journal on Semantic Web and Information Systems, 2024, 20 (01)
  • [22] Semantic-driven multimedia retrieval with the MPEG Query Format
    Ruben Tous
    Jaime Delgado
    [J]. Multimedia Tools and Applications, 2010, 49 : 213 - 233
  • [23] Semantic-Driven Selection of Printer Color Rendering Intents
    Falkenstern, Kristyn
    Lindner, Albrecht
    Suesstrunk, Sabine
    Bonnier, Nicolas
    [J]. COLOR SCIENCE AND ENGINEERING SYSTEMS, TECHNOLOGIES, AND APPLICATIONS: TWENTIETH COLOR AND IMAGING CONFERENCE, 2012, : 323 - 328
  • [24] length A semantic-driven network for infrared and visible fusion
    Liu, Xiaowen
    Huo, Hongtao
    Li, Jing
    Pang, Shan
    Zheng, Bowen
    [J]. INFORMATION FUSION, 2024, 108
  • [25] Semantic-driven multimedia retrieval with the MPEG Query Format
    Tous, Ruben
    Delgado, Jaime
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2010, 49 (01) : 213 - 233
  • [26] Semantic-driven multi-camera pedestrian detection
    Lopez-Cifuentes, Alejandro
    Escudero-Vinolo, Marcos
    Bescos, Jesus
    Carballeira, Pablo
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (05) : 1211 - 1237
  • [27] Semantic-driven multi-camera pedestrian detection
    Alejandro López-Cifuentes
    Marcos Escudero-Viñolo
    Jesús Bescós
    Pablo Carballeira
    [J]. Knowledge and Information Systems, 2022, 64 : 1211 - 1237
  • [28] A semantic-driven cache management approach for mobile applications
    Wei, Guiyi
    Yu, Jun
    Shi, Hanxiao
    Ling, Yun
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 3, PROCEEDINGS, 2006, 3993 : 184 - 191
  • [29] Towards a semantic-driven and scalable publish/subscribe framework
    Chaabane, Amina
    Diop, Code
    Louati, Wassef
    Jmaiel, Mohamed
    Gomez-Montalvo, Jorge
    Exposito, Ernesto
    [J]. INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2013, 7 (03) : 165 - 175
  • [30] SeDIE: A Semantic-Driven Engine for Integration of Healthcare Data
    Dhayne, Houssein
    Kilany, Rima
    Haque, Rafiqul
    Taher, Yehia
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 617 - 622