Simultaneously enhancing strength-ductility synergy in the Ti2AlNb diffusion bonding joint via heterogeneous high-entropy interface design

被引:9
|
作者
Du, Y. J. [1 ]
Song, J. F. [1 ]
Xiong, J. T. [1 ]
Li, S. W. [1 ]
Jin, F. [1 ]
Li, J. L. [1 ,2 ]
Wen, G. D. [3 ]
Guo, W. [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab Frict Welding Technol, Xian 710072, Peoples R China
[3] Xian Univ Sci & Technol, Coll Mech Engn, Xian 710054, Peoples R China
基金
中国博士后科学基金;
关键词
Heterogeneous high entropy alloy; Diffusion bonding; Strength-ductility synergy; Ti 2 AlNb alloys; MECHANICAL-PROPERTIES; ALLOY SHEET; TI FOIL; STEEL; MICROSTRUCTURE; TEMPERATURE; DEFORMATION; TENSILE; B2;
D O I
10.1016/j.matdes.2023.112581
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Brittle defects, such as continuous intermetallic compounds and straight bonding line composed of grain or phase boundaries, often form at the interface of dissimilar metals joints, resulting in the premature cracking at the interface. Therefore, bonding interfaces with excellent strength and ductility are attractive for application in welding structural components. However, increasing strength usually comes at the expense of ductility, which is known as strength-ductility trade-off. In this work, we explored a novel interface design strategy by introducing multi-scale grains into the bonding interface of the Ti2AlNb-based alloy using a heterogeneous refractory high entropy alloy. The interface was composed of the multi-sized grains, which successfully eliminated the brittle defects. Through this approach, the strength and ductility of the joint synergistically improved to 877 MPa and 11.54 %, respectively. Both strength and ductility exceeded 98 % of the mechanical performances of the base metal. The exceptional strength-ductility combination was benefiting from cooperative strain hardening mechanisms, which increased the interfacial hardening capability via in situ refinement of free path of dislocations motion. This hetero-interface strategy could expand the design ideas for the bonding interface of intermetallic compound-based alloys, and provides a new approach to synergistically increase the mechanical performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Simultaneously enhancing strength-ductility synergy in refractory high entropy alloys by a heterogeneous structure design
    Du, Y. J.
    Xu, S. M.
    Wang, F.
    Li, J. L.
    Wen, G. D.
    Xiong, J. T.
    Guo, W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 993
  • [2] Enhancing strength and ductility synergy through heterogeneous laminated structure design in high-entropy alloys
    Zeng, Longfei
    Zhang, Jinghui
    Lu, Xu
    Li, Shaoyu
    Jiang, Pingan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 222
  • [3] Enhanced strength-ductility synergy by high density heterogeneous precipitation microstructure in high-entropy alloys
    Li, Wei
    Zhang, Jianbao
    Cui, Dexu
    Wang, Xinxin
    Zhang, Pengfei
    Wang, Hanming
    Zhang, Yiwen
    Wang, Haifeng
    Kai, Ji-jung
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 928
  • [4] Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy
    Pei, Zongrui
    Zhao, Shiteng
    Detrois, Martin
    Jablonski, Paul D.
    Hawk, Jeffrey A.
    Alman, David E.
    Asta, Mark
    Minor, Andrew M.
    Gao, Michael C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy
    Zongrui Pei
    Shiteng Zhao
    Martin Detrois
    Paul D. Jablonski
    Jeffrey A. Hawk
    David E. Alman
    Mark Asta
    Andrew M. Minor
    Michael C. Gao
    Nature Communications, 14
  • [6] Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy
    Zhang, Zequn
    Huang, Yong
    Xu, Qi
    Fellner, Simon
    Hohenwarter, Anton
    Wurster, Stefan
    Song, Kaikai
    Gammer, Christoph
    Eckert, Jurgen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 103 - 114
  • [7] Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy
    Zhang, Cheng
    Zhu, Chaoyi
    Cao, Penghui
    Wang, Xin
    Ye, Fan
    Kaufmann, Kevin
    Casalena, Lee
    MacDonald, Benjamin E.
    Pan, Xiaoqing
    Vecchio, Kenneth
    Lavernia, Enrique J.
    ACTA MATERIALIA, 2020, 199 : 602 - 612
  • [8] Excellent strength-ductility synergy and corrosion resistance in a metastable high entropy alloy via heterogeneous structure design
    Lu, Kejie
    Li, Jiahao
    Wang, Youfan
    Ma, Xinkai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 941
  • [9] Ultrafine lamellar microstructures for enhancing strength-ductility synergy in high-entropy alloys via severe cold rolling process
    Naseri, Majid
    Moghaddam, Ahmad Ostovari
    Shaburova, Nataliya
    Gholami, Davood
    Pellenen, Anatoliy
    Trofimov, Evgeny
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [10] Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures
    Hasan, M. N.
    Liu, Y. F.
    An, X. H.
    Gu, J.
    Song, M.
    Cao, Y.
    Li, Y. S.
    Zhu, Y. T.
    Liao, X. Z.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 123 : 178 - 195