Enhanced strength-ductility synergy by high density heterogeneous precipitation microstructure in high-entropy alloys

被引:0
|
作者
Li, Wei [1 ]
Zhang, Jianbao [1 ,2 ]
Cui, Dexu [1 ]
Wang, Xinxin [1 ]
Zhang, Pengfei [1 ]
Wang, Hanming [1 ]
Zhang, Yiwen [1 ]
Wang, Haifeng [1 ]
Kai, Ji-jung [2 ]
机构
[1] Northwestern Polytech Univ, Ctr Adv Lubricant & Seal Mat, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] City Univ Hong Kong, Ctr Adv Nucl Safety & Sustainable Dev, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
High-entropy alloys; Heterogeneous microstructure; Precipitation strengthening; Deformation mechanisms; MECHANICAL-PROPERTIES; CRYOGENIC STRENGTH; EVOLUTION; SIZE; TRANSFORMATION; MARTENSITE;
D O I
10.1016/j.msea.2025.147983
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterogeneous microstructures have become a crucial method for high-entropy alloys (HEAs) to overcome the limitations of strength and plasticity synergy, as well as to explore other unique material properties or novel materials. Here, a strategy has been reported for breaking the strength-ductility trade-off by introducing nonmetallic element Si in Fe55Co15Cr10Al8Ni12-xSix (x = 0, 3 at. %) alloys system. The microstructure evolution and its effect on the mechanical properties were systematically analyzed and discussed. The results suggested that the addition of Si elements facilitates the transformation of the face-centered cubic (FCC) into body-centered cubic (BCC) microstructures, in which the spherical Al, Ni-rich B2 nanoparticles are coherently dispersed in the Fe, Cr-rich BCC matrix. Namely, the microstructure of HEA devoid of the Si element exhibits FCC + BCC dual- phase heterogeneous structures, while the microstructure evolves into a BCC-based B2 precipitation heterogeneous structures after adding Si. The B2 precipitates in alloys act as strengtheners that can block dislocation motion thus enhance the work hardening capability to strengthen materials. The heterogeneous precipitation microstructure resulting from Si alloying significantly elevates the mechanical properties of the alloy, which exhibit excellent strength of 1.4 GPa at room temperature with minimal sacrifice in plasticity. This strategy of utilizing B2 precipitation heterogeneous structures provides a promising way for the development of next- generation structural materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy
    Zongrui Pei
    Shiteng Zhao
    Martin Detrois
    Paul D. Jablonski
    Jeffrey A. Hawk
    David E. Alman
    Mark Asta
    Andrew M. Minor
    Michael C. Gao
    Nature Communications, 14
  • [2] Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy
    Pei, Zongrui
    Zhao, Shiteng
    Detrois, Martin
    Jablonski, Paul D.
    Hawk, Jeffrey A.
    Alman, David E.
    Asta, Mark
    Minor, Andrew M.
    Gao, Michael C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy
    Ma, Evan
    Wu, Xiaolei
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy
    Zhang, Cheng
    Zhu, Chaoyi
    Cao, Penghui
    Wang, Xin
    Ye, Fan
    Kaufmann, Kevin
    Casalena, Lee
    MacDonald, Benjamin E.
    Pan, Xiaoqing
    Vecchio, Kenneth
    Lavernia, Enrique J.
    ACTA MATERIALIA, 2020, 199 : 602 - 612
  • [5] Strength-Ductility Synergy of Lightweight High Entropy Alloys
    Madewu, Fainah
    Malatji, Nicholus
    Shongwe, Mxolisi Brendon
    Marazani, Tawanda
    Kanyane, Lehlogonolo Rudolf
    ENGINEERING REPORTS, 2025, 7 (03)
  • [6] Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy
    Zhang, Zequn
    Huang, Yong
    Xu, Qi
    Fellner, Simon
    Hohenwarter, Anton
    Wurster, Stefan
    Song, Kaikai
    Gammer, Christoph
    Eckert, Jurgen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 103 - 114
  • [7] Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae
    Shi, Peijian
    Ren, Weili
    Zheng, Tianxiang
    Ren, Zhongming
    Hou, Xueling
    Peng, Jianchao
    Hu, Pengfei
    Gao, Yanfei
    Zhong, Yunbo
    Liaw, Peter K.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy
    He, M. Y.
    Shen, Y. F.
    Jia, N.
    Liaw, P. K.
    APPLIED MATERIALS TODAY, 2021, 25
  • [9] Superior strength-ductility synergy in additively manufactured CoCrFeNi high-entropy alloys with multi-scale hierarchical microstructure
    Wang, Shanshan
    Chen, Zhe
    Chen, Ruiguang
    Wu, Zhining
    Jia, Yunfeng
    Zhang, Weijian
    Wang, Yixiang
    Liu, Weihong
    Zhao, Yilu
    Shi, Rongpei
    Cao, Boxuan
    Yu, Suzhu
    Wei, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1006
  • [10] Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys
    Reddy, S. R.
    Yoshida, S.
    Sunkari, U.
    Lozinko, A.
    Joseph, J.
    Saha, R.
    Fabijanic, D.
    Guo, S.
    Bhattacharjee, P. P.
    Tsuji, N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 764