Enhanced strength-ductility synergy by high density heterogeneous precipitation microstructure in high-entropy alloys

被引:0
|
作者
Li, Wei [1 ]
Zhang, Jianbao [1 ,2 ]
Cui, Dexu [1 ]
Wang, Xinxin [1 ]
Zhang, Pengfei [1 ]
Wang, Hanming [1 ]
Zhang, Yiwen [1 ]
Wang, Haifeng [1 ]
Kai, Ji-jung [2 ]
机构
[1] Northwestern Polytech Univ, Ctr Adv Lubricant & Seal Mat, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] City Univ Hong Kong, Ctr Adv Nucl Safety & Sustainable Dev, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
High-entropy alloys; Heterogeneous microstructure; Precipitation strengthening; Deformation mechanisms; MECHANICAL-PROPERTIES; CRYOGENIC STRENGTH; EVOLUTION; SIZE; TRANSFORMATION; MARTENSITE;
D O I
10.1016/j.msea.2025.147983
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Heterogeneous microstructures have become a crucial method for high-entropy alloys (HEAs) to overcome the limitations of strength and plasticity synergy, as well as to explore other unique material properties or novel materials. Here, a strategy has been reported for breaking the strength-ductility trade-off by introducing nonmetallic element Si in Fe55Co15Cr10Al8Ni12-xSix (x = 0, 3 at. %) alloys system. The microstructure evolution and its effect on the mechanical properties were systematically analyzed and discussed. The results suggested that the addition of Si elements facilitates the transformation of the face-centered cubic (FCC) into body-centered cubic (BCC) microstructures, in which the spherical Al, Ni-rich B2 nanoparticles are coherently dispersed in the Fe, Cr-rich BCC matrix. Namely, the microstructure of HEA devoid of the Si element exhibits FCC + BCC dual- phase heterogeneous structures, while the microstructure evolves into a BCC-based B2 precipitation heterogeneous structures after adding Si. The B2 precipitates in alloys act as strengtheners that can block dislocation motion thus enhance the work hardening capability to strengthen materials. The heterogeneous precipitation microstructure resulting from Si alloying significantly elevates the mechanical properties of the alloy, which exhibit excellent strength of 1.4 GPa at room temperature with minimal sacrifice in plasticity. This strategy of utilizing B2 precipitation heterogeneous structures provides a promising way for the development of next- generation structural materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy
    Evan Ma
    Xiaolei Wu
    Nature Communications, 10
  • [22] A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance
    Feng, Xiaobin
    Feng, Chuangshi
    Lu, Yang
    MATERIALS, 2022, 15 (23)
  • [23] Designing nanoparticles-strengthened high-entropy alloys with simultaneously enhanced strength-ductility synergy at both room and elevated temperatures
    Hou, J. X.
    Liu, S. F.
    Cao, B. X.
    Luan, J. H.
    Zhao, Y. L.
    Chen, Z.
    Zhang, Q.
    Liu, X. J.
    Liu, C. T.
    Kai, J. J.
    Yang, T.
    ACTA MATERIALIA, 2022, 238
  • [24] Microstructural origin of the superior strength-ductility synergy of g′-strengthened high-entropy alloy with heterogeneous grain structure and discontinuous precipitation configuration
    Jang, Tae Jin
    Baek, Ju-Hyun
    Suh, Jin-Yoo
    Zargaran, Alireza
    Sohn, Seok Su
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 984 - 999
  • [25] High strength-ductility combination in low-density dual phase high High strength-ductility combination in low-density dual phase high entropy alloys entropy alloys
    Mugale, Manoj
    Karki, Sanoj
    Choudhari, Amit
    Digole, Satyavan
    Garg, Mayank
    Kandadai, Venkata A. S.
    Walunj, Ganesh
    Jasthi, Bharat K.
    Borkar, Tushar
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [26] Enhanced strength-ductility synergy via high dislocation density-induced strain hardening in nitrogen interstitial CrMnFeCoNi high-entropy alloy
    Li, Huabing
    Han, Yu
    Feng, Hao
    Zhou, Gang
    Jiang, Zhouhua
    Cai, Minghui
    Li, Yizhuang
    Huang, Mingxin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 141 : 184 - 192
  • [27] Constructing a heterogeneous microstructure in the CoCrFeNi-based high entropy alloy to obtain a superior strength-ductility synergy
    Wu, Baolin
    Man, Jiale
    Duan, Guosheng
    Zhang, Lu
    Du, Xinghao
    Liu, Yandong
    Esling, Claude
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886
  • [28] Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy
    Zhang, Cheng
    Zhu, Chaoyi
    Harrington, Tyler
    Vecchio, Kenneth
    SCRIPTA MATERIALIA, 2018, 154 : 78 - 82
  • [29] A cost-effective cryogenic high-entropy alloy with high strength-ductility synergy and strain hardenability
    Yin, Yu
    Ren, Wangrui
    Tan, Qiyang
    Chen, Houwen
    Huang, Han
    Zhang, Ming-Xing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 865
  • [30] Exceptional strength-ductility synergy achieved by spinodal decomposition in a high Cu content high-entropy alloy
    Wu, Yidong
    Dong, Zhao
    Zheng, Boyuan
    Liu, Xuli
    Hui, Xidong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 7958 - 7968