A fast non-parametric test of association for multiple traits
被引:3
|
作者:
Garrido-Martin, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Catalonia, SpainUniv Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
Garrido-Martin, Diego
[1
,2
]
Calvo, Miquel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, SpainUniv Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
Calvo, Miquel
[1
]
Reverter, Ferran
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, SpainUniv Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
Reverter, Ferran
[1
]
论文数: 引用数:
h-index:
机构:
Guigo, Roderic
[2
,3
]
机构:
[1] Univ Barcelona UB, Dept Genet Microbiol & Stat, Av Diagonal 643, Barcelona 08028, Spain
[2] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Catalonia, Spain
The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets. Here, we derive the limiting null distribution of the PERMANOVA test statistic, providing a framework for the fast computation of asymptotic p values. Our asymptotic test presents controlled type I error and high power, often outperforming parametric approaches. We illustrate its applicability in the context of QTL mapping and GWAS.