Aerodynamic and hydrodynamic investigations on linear upscaling and optimization of floating offshore wind turbines

被引:3
|
作者
Putra, Muhammad Juanda [1 ]
Oguz, Elif [1 ,2 ]
Uzol, Nilay Sezer [2 ,3 ]
机构
[1] Middle East Tech Univ, Dept Civil Engn, Hydraul Lab, TR-06800 Ankara, Turkiye
[2] Middle East Tech Univ, Ctr Wind Energy Res METUWIND RUZGEM, TR-06800 Ankara, Turkiye
[3] Middle East Tech Univ, Dept Aerosp Engn, TR-06800 Ankara, Turkiye
关键词
Linear upscaling; Optimization; Floating offshore wind turbine; Semisubmersible;
D O I
10.1016/j.oceaneng.2023.115728
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This study presents the procedure of upscaling Floating Offshore Wind Turbines (FOWTs) atop a semisubmersible platform using linear scaling. NREL 5 MW, IEA 10 MW, and IEA 15 MW reference wind turbines, together with OC4 DeepCwind semisubmersible platform, are used as baselines and upscaled up to 20 MW. Upscaled NREL 5 MW rotor blades are further optimized using HARP_Opt to obtain higher power and Co_Blade is used to obtain the best structural and composite material layup. Unsteady simulations of the turbines are performed using OpenFAST under different wave conditions and their performances are compared. It is found that upscaling FOWT is feasible and beneficial. Upscaling process increases the natural period and decreases the Response Amplitude Operator (RAO) of the FOWT. The power produced by optimized turbines with similar blade lengths as linearly scaled blades is conservative, although the power coefficient is higher. Further increasing the blade length more than linear scaling results in better performance with higher power production.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines
    Chen, Chaohe
    Ma, Yuan
    Fan, Tianhui
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 157
  • [22] Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines
    Wang, Xinbao
    Cai, Chang
    Chen, Yewen
    Chen, Yuejuan
    Liu, Junbo
    Xiao, Yang
    Zhong, Xiaohui
    Shi, Kezhong
    Li, Qing'an
    ENERGY, 2023, 283
  • [23] A scaled wind turbine model-based aerodynamic testing apparatus for offshore floating wind turbines
    Lin, Jiahuan
    Wang, Yangwei
    Duan, Huawei
    Liu, Yuanchang
    Zhang, Jun
    JOURNAL OF MARINE ENGINEERING AND TECHNOLOGY, 2023, 22 (06): : 263 - 272
  • [24] Experimental investigation on the hydrodynamic effects of heave plates used in floating offshore wind turbines
    Zhang, Lixian
    Shi, Wei
    Michailides, Constantine
    Zheng, Siming
    Li, Ying
    OCEAN ENGINEERING, 2023, 267
  • [25] Comparison study on mooring line models for hydrodynamic performances of floating offshore wind turbines
    Zhong, Wenjie
    Zhao, Weiwen
    Wan, Decheng
    Zhao, Yan
    OCEAN ENGINEERING, 2024, 296
  • [26] Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines
    Wang, Baowei
    SajadRahmdel
    Han, Changwan
    Jung, Seungbin
    Park, Seonghun
    WIND AND STRUCTURES, 2014, 18 (03) : 267 - 279
  • [27] HEAVE-PLATE HYDRODYNAMIC COEFFICIENTS FOR FLOATING OFFSHORE WIND TURBINES - A COMPILATION OF DATA
    Turner, Matthew
    Wang, Lu
    Thiagarajan, Krish
    Robertson, Amy
    PROCEEDINGS OF ASME 2023 5TH INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, IOWTC2023, 2023,
  • [28] Coupled Aerodynamic and Hydrodynamic Analysis of Floating Offshore Wind Turbine Using CFD Method
    Wu Jun
    Meng Long
    Zhao Yongsheng
    He Yanping
    Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33 (01) : 80 - 87
  • [29] Generic Upscaling Methodology of a Floating Offshore Wind Turbine
    Wu, Jeffrey
    Kim, Moo-Hyun
    ENERGIES, 2021, 14 (24)
  • [30] Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms
    Kikuchi, Yuka
    Ishihara, Takeshi
    16TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2019, 1356