Aerodynamic and hydrodynamic investigations on linear upscaling and optimization of floating offshore wind turbines

被引:3
|
作者
Putra, Muhammad Juanda [1 ]
Oguz, Elif [1 ,2 ]
Uzol, Nilay Sezer [2 ,3 ]
机构
[1] Middle East Tech Univ, Dept Civil Engn, Hydraul Lab, TR-06800 Ankara, Turkiye
[2] Middle East Tech Univ, Ctr Wind Energy Res METUWIND RUZGEM, TR-06800 Ankara, Turkiye
[3] Middle East Tech Univ, Dept Aerosp Engn, TR-06800 Ankara, Turkiye
关键词
Linear upscaling; Optimization; Floating offshore wind turbine; Semisubmersible;
D O I
10.1016/j.oceaneng.2023.115728
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This study presents the procedure of upscaling Floating Offshore Wind Turbines (FOWTs) atop a semisubmersible platform using linear scaling. NREL 5 MW, IEA 10 MW, and IEA 15 MW reference wind turbines, together with OC4 DeepCwind semisubmersible platform, are used as baselines and upscaled up to 20 MW. Upscaled NREL 5 MW rotor blades are further optimized using HARP_Opt to obtain higher power and Co_Blade is used to obtain the best structural and composite material layup. Unsteady simulations of the turbines are performed using OpenFAST under different wave conditions and their performances are compared. It is found that upscaling FOWT is feasible and beneficial. Upscaling process increases the natural period and decreases the Response Amplitude Operator (RAO) of the FOWT. The power produced by optimized turbines with similar blade lengths as linearly scaled blades is conservative, although the power coefficient is higher. Further increasing the blade length more than linear scaling results in better performance with higher power production.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Coupled aerodynamic and hydrodynamic analyses of upscaled floating offshore wind turbines
    Putra, M. J.
    Oguz, E.
    Sezer-Uzol, N.
    [J]. SUSTAINABLE DEVELOPMENT AND INNOVATIONS IN MARINE TECHNOLOGIES, IMAM 2022, 2023, 9 : 229 - 236
  • [2] THE EFFECTS OF HYDRODYNAMIC AND AERODYNAMIC LOADS ON THE LOW FREQUENCY RESPONSES OF FLOATING OFFSHORE WIND TURBINES
    Land, Edward
    Brindley, Will
    Hu, Zhiqiang
    [J]. PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [3] A review of aerodynamic and wake characteristics of floating offshore wind turbines
    Wang, Xinbao
    Cai, Chang
    Cai, Shang-Gui
    Wang, Tengyuan
    Wang, Zekun
    Song, Juanjuan
    Rong, Xiaomin
    Li, Qing'an
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 175
  • [4] PLATFORM HYDRODYNAMIC AND STRUCTURAL CONTROL CO-OPTIMIZATION FOR THE FLOATING OFFSHORE WIND TURBINES
    Liang, Jinbin
    Du, Xianping
    Yi, Jianbo
    Qian, Guowei
    Xie, Peng
    Xu, Hongyi
    [J]. PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3A, 2023,
  • [5] Optimization of Mooring Systems for Floating Offshore Wind Turbines
    Benassai, Guido
    Campanile, Antonio
    Piscopo, Vincenzo
    Scamardella, Antonio
    [J]. COASTAL ENGINEERING JOURNAL, 2015, 57 (04)
  • [6] AERODYNAMIC ROLL-YAW INSTABILITIES OF FLOATING OFFSHORE WIND TURBINES
    Haslum, Herbjorn
    Marley, Mathias
    Navalkar, Sachin Tejwant
    Skaare, Bjorn
    Maljaars, Nico
    Andersen, Hakon
    [J]. PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 9, 2020,
  • [7] Floating offshore wind turbines
    Sclavounos, Paul
    [J]. MARINE TECHNOLOGY SOCIETY JOURNAL, 2008, 42 (02) : 39 - 43
  • [8] A COUPLED AERO-HYDRODYNAMIC SIMULATOR FOR OFFSHORE FLOATING WIND TURBINES
    Duan, Lei
    Kajiwara, Hiroyuki
    [J]. 33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY, 2014,
  • [9] Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines
    Li, Liang
    Liu, Yuanchuan
    Yuan, Zhiming
    Gao, Yan
    [J]. ENERGY, 2018, 157 : 379 - 390
  • [10] Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
    Xu, B. F.
    Wang, T. G.
    Yuan, Y.
    Cao, J. F.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2035):