Physics-Informed Machine Learning for Accurate Prediction of Temperature and Melt Pool Dimension in Metal Additive Manufacturing
被引:10
|
作者:
Jiang, Feilong
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Inst Technol Sci, Wuhan, Peoples R ChinaWuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
Jiang, Feilong
[1
]
Xia, Min
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Dept Engn, Lancaster, England
Univ Lancaster, Dept Engn, Lancaster LA1 4YW, EnglandWuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
Xia, Min
[2
,5
]
Hu, Yaowu
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
Wuhan Univ, Sch Power & Mech Engn, Wuhan, Peoples R China
Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R ChinaWuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
Hu, Yaowu
[1
,3
,4
]
机构:
[1] Wuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
[2] Univ Lancaster, Dept Engn, Lancaster, England
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan, Peoples R China
[4] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[5] Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England
metal additive manufacturing;
melt pool;
physics-informed machine learning;
temperature prediction;
FLUID-FLOW;
SIMULATION;
MODEL;
HEAT;
D O I:
10.1089/3dp.2022.0363
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
The temperature distribution and melt pool size have a great influence on the microstructure and mechanical behavior of metal additive manufacturing process. The numerical method can give relatively accurate results but is time-consuming and, therefore, unsuitable for in-process prediction. Owing to its remarkable capabilities, machine learning methods have been applied to predict melt pool size and temperature distribution. However, the success of traditional data-driven machine learning methods is highly dependent on the amount and quality of the training data, which is not always convenient to access. This article proposes a physics-informed machine learning (PIML) method, which integrates data and physics laws in the training parts, overcoming the problems of low speed and data availability. An artificial neural network constrained by the heat transfer equation and a small amount of labeled data is developed to predict the melt pool size and temperature distribution. Besides, the locally adaptive activation function is utilized to improve the prediction performance. The result shows that the developed PIML model can accurately predict the temperature and melt pool dimension under different scanning speeds with a small amount of labeled data, which shows significant potential in practical application.
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Kuwait Univ, Dept Ind & Management Syst Engn, Safat 13060, KuwaitGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Alenezi, Dhari F.
Biehler, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Biehler, Michael
Shi, Jianjun
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Shi, Jianjun
Li, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Kuwait Univ, Dept Ind & Management Syst Engn, Safat 13060, KuwaitGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Alenezi, Dhari F.
Biehler, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Biehler, Michael
Shi, Jianjun
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
Shi, Jianjun
Li, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA