ViP-NeRF: Visibility Prior for Sparse Input Neural Radiance Fields

被引:14
|
作者
Somraj, Nagabhushan [1 ]
Soundararajan, Rajiv [1 ]
机构
[1] Indian Inst Sci, Bengaluru, India
关键词
neural rendering; novel view synthesis; sparse input NeRF; visibility prior; plane sweep volumes;
D O I
10.1145/3588432.3591539
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural radiance fields (NeRF) have achieved impressive performances in view synthesis by encoding neural representations of a scene. However, NeRFs require hundreds of images per scene to synthesize photo-realistic novel views. Training them on sparse input views leads to overfitting and incorrect scene depth estimation resulting in artifacts in the rendered novel views. Sparse input NeRFs were recently regularized by providing dense depth estimated from pre-trained networks as supervision, to achieve improved performance over sparse depth constraints. However, we find that such depth priors may be inaccurate due to generalization issues. Instead, we hypothesize that the visibility of pixels in different input views can be more reliably estimated to provide dense supervision. In this regard, we compute a visibility prior through the use of plane sweep volumes, which does not require any pre-training. By regularizing the NeRF training with the visibility prior, we successfully train the NeRF with few input views. We reformulate the NeRF to also directly output the visibility of a 3D point from a given viewpoint to reduce the training time with the visibility constraint. On multiple datasets, our model outperforms the competing sparse input NeRF models including those that use learned priors. The source code for our model can be found on our project page: https: //nagabhushansn95.github.io/publications/2023/ViP-NeRF.html.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields
    Isaac-Medina, Brian K. S.
    Willcocks, Chris G.
    Breckon, Toby P.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 66 - 75
  • [42] RS-NeRF: Neural Radiance Fields from Rolling Shutter Images
    Niu, Muyao
    Chen, Tong
    Zhan, Yifan
    Li, Zhuoxiao
    Ji, Xiang
    Zheng, Yinqiang
    COMPUTER VISION-ECCV 2024, PT XLVI, 2025, 15104 : 163 - 180
  • [43] DoF-NeRF: Depth-of-Field Meets Neural Radiance Fields
    Wu, Zijin
    Li, Xingyi
    Peng, Juewen
    Lu, Hao
    Cao, Zhiguo
    Zhong, Weicai
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1718 - 1729
  • [44] Touching a NeRF: Leveraging Neural Radiance Fields for Tactile Sensory Data Generation
    Zhong, Shaohong
    Albini, Alessandro
    Jones, Oiwi Parker
    Maiolino, Perla
    Posner, Ingmar
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1618 - 1628
  • [45] E-NeRF: Neural Radiance Fields From a Moving Event Camera
    Klenk, Simon
    Koestler, Lukas
    Scaramuzza, Davide
    Cremers, Daniel
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1587 - 1594
  • [46] Loc-NeRF: Monte Carlo Localization using Neural Radiance Fields
    Maggio, Dominic
    Abate, Marcus
    Shi, Jingnan
    Mario, Courtney
    Carlone, Luca
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4018 - 4025
  • [47] LB-NERF: LIGHT BENDING NEURAL RADIANCE FIELDS FOR TRANSPARENT MEDIUM
    Fujitomi, Taku
    Sakurada, Ken
    Hamaguchi, Ryuhei
    Shishido, Hidehiko
    Onishi, Masaki
    Kameda, Yoshinari
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2142 - 2146
  • [48] SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields
    Mirzaei, Ashkan
    Aumentado-Armstrong, Tristan
    Derpanis, Konstantinos G.
    Kelly, Jonathan
    Brubaker, Marcus A.
    Gilitschenski, Igor
    Levinshtein, Alex
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 20669 - 20679
  • [49] NEURAL RADIANCE FIELDS (NERF): REVIEW AND POTENTIAL APPLICATIONS TO DIGITAL CULTURAL HERITAGE
    Croce, V.
    Caroti, G.
    De Luca, L.
    Piemonte, A.
    Veron, P.
    29TH CIPA SYMPOSIUM DOCUMENTING, UNDERSTANDING, PRESERVING CULTURAL HERITAGE. HUMANITIES AND DIGITAL TECHNOLOGIES FOR SHAPING THE FUTURE, VOL. 48-M-2, 2023, : 453 - 460
  • [50] Stega4NeRF: cover selection steganography for neural radiance fields
    Dong, Weina
    Liu, Jia
    Chen, Lifeng
    Sun, Wenquan
    Pan, Xiaozhong
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (03) : 33031