Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning

被引:13
|
作者
Chen, Yi [1 ]
Guo, Yandi [1 ]
Fan, Qiuxu [1 ]
Zhang, Qinghui [1 ]
Dong, Yu [2 ]
机构
[1] Beijing Technol & Business Univ, Beijing Key Lab Big Data Technol Food Safety, Beijing 100048, Peoples R China
[2] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW 2008, Australia
基金
中国国家自然科学基金;
关键词
health; food recommendation; knowledge graph; graph convolution network; multi-task learning;
D O I
10.3390/foods12102079
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Current food recommender systems tend to prioritize either the user's dietary preferences or the healthiness of the food, without considering the importance of personalized health requirements. To address this issue, we propose a novel approach to healthy food recommendations that takes into account the user's personalized health requirements, in addition to their dietary preferences. Our work comprises three perspectives. Firstly, we propose a collaborative recipe knowledge graph (CRKG) with millions of triplets, containing user-recipe interactions, recipe-ingredient associations, and other food-related information. Secondly, we define a score-based method for evaluating the healthiness match between recipes and user preferences. Based on these two prior perspectives, we develop a novel health-aware food recommendation model (FKGM) using knowledge graph embedding and multi-task learning. FKGM employs a knowledge-aware attention graph convolutional neural network to capture the semantic associations between users and recipes on the collaborative knowledge graph and learns the user's requirements in both preference and health by fusing the losses of these two learning tasks. We conducted experiments to demonstrate that FKGM outperformed four competing baseline models in integrating users' dietary preferences and personalized health requirements in food recommendations and performed best on the health task.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Multi-task heterogeneous graph learning on electronic health records
    Chan, Tsai Hor
    Yin, Guosheng
    Bae, Kyongtae
    Yu, Lequan
    NEURAL NETWORKS, 2024, 180
  • [32] Market2Dish: A Health-aware Food Recommendation System
    Jiang, Hao
    Wang, Wenjie
    Liu, Meng
    Nie, Liqiang
    Duan, Ling-Yu
    Xu, Changsheng
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2188 - 2190
  • [33] Health-aware food recommendation system with dual attention in heterogeneous graphs
    Forouzandeh, Saman
    Rostami, Mehrdad
    Berahmand, Kamal
    Sheikhpour, Razieh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [34] Iterative framework based on multi-task learning for service recommendation
    Yu, Ting
    Yu, Dongjin
    Wang, Dongjing
    Yang, Quanxin
    Hu, Xueyou
    JOURNAL OF SYSTEMS AND SOFTWARE, 2024, 207
  • [35] Federated Multi-task Graph Learning
    Liu, Yijing
    Han, Dongming
    Zhang, Jianwei
    Zhu, Haiyang
    Xu, Mingliang
    Chen, Wei
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (05)
  • [36] Iterative framework based on multi-task learning for service recommendation
    Yu, Ting
    Yu, Dongjin
    Wang, Dongjing
    Yang, Quanxin
    Hu, Xueyou
    Journal of Systems and Software, 2024, 207
  • [37] A novel embedding learning framework for relation completion and recommendation based on graph neural network and multi-task learning
    Zhao, Wenbin
    Li, Yahui
    Fan, Tongrang
    Wu, Feng
    SOFT COMPUTING, 2022, 28 (Suppl 2) : 447 - 447
  • [38] Multi-task Learning for Hyper-Relational Knowledge Graph Completion
    Yin, Jiaqian
    Zhou, Jie
    Shan, Yongxue
    Peng, Jie
    Liu, Haijiao
    Zhou, Xin
    Wang, Xiaodong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 115 - 126
  • [39] Cross-Task Knowledge Distillation in Multi-Task Recommendation
    Yang, Chenxiao
    Pan, Junwei
    Gao, Xiaofeng
    Jiang, Tingyu
    Liu, Dapeng
    Chen, Guihai
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4318 - 4326
  • [40] Sentence-graph-level knowledge injection with multi-task learning
    Chen, Liyi
    Wang, Runze
    Shi, Chen
    Yuan, Yifei
    Liu, Jie
    Hu, Yuxiang
    Jiang, Feijun
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2025, 28 (01):