Equivariant derived equivalence and rational points on K3 surfaces

被引:0
|
作者
Hassett, Brendan [1 ]
Tschinkel, Yuri [2 ,3 ]
机构
[1] Brown Univ, Dept Math, Box 1917,151 Thayer St, Providence, RI 02912 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Simons Fdn, 160 Fifth Ave, New York, NY 10010 USA
关键词
SYMPLECTIC AUTOMORPHISMS; CATEGORIES; ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study arithmetic properties of derived equivalent K3 surfaces over the field of Laurent power series, using the equivariant geom-etry of K3 surfaces with cyclic groups actions.
引用
收藏
页码:293 / 312
页数:20
相关论文
共 50 条
  • [31] Rational Points in the Noether-Lefschetz Locus of Moduli Spaces of K3 Surfaces
    Valloni, Domenico
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (14) : 10503 - 10523
  • [32] Rational points and derived equivalence
    Addington, Nicolas
    Antieau, Benjamin
    Honigs, Katrina
    Frei, Sarah
    COMPOSITIO MATHEMATICA, 2021, 157 (05) : 1036 - 1050
  • [33] Orbits of points on certain K3 surfaces
    Baragar, Arthur
    JOURNAL OF NUMBER THEORY, 2011, 131 (03) : 578 - 599
  • [34] Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O'Grady
    Voisin, C.
    Recent Advances in Algebraic Geometry, 2015, 417 : 422 - 436
  • [35] Derived equivalent Hilbert schemes of points on K3 surfaces which are not birational
    Meachan, Ciaran
    Mongardi, Giovanni
    Yoshioka, Kota
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 871 - 880
  • [36] Derived equivalent Hilbert schemes of points on K3 surfaces which are not birational
    Ciaran Meachan
    Giovanni Mongardi
    Kōta Yoshioka
    Mathematische Zeitschrift, 2020, 294 : 871 - 880
  • [37] An explicit derived equivalence of Azumaya algebras on K3 surfaces via Koszul duality
    Ingalls, Colin
    Khalid, Madeeha
    JOURNAL OF ALGEBRA, 2015, 432 : 300 - 327
  • [38] Equivalence of K3 surfaces from Verra threefolds
    Kapustka, Grzegorz
    Kapustka, Michal
    Moschetti, Riccardo
    KYOTO JOURNAL OF MATHEMATICS, 2020, 60 (04) : 1209 - 1226
  • [39] Equivariant K3 invariants
    Cheng, Miranda C. N.
    Duncan, John F. R.
    Harrison, Sarah M.
    Kachru, Shamit
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2017, 11 (01) : 41 - 72
  • [40] Arithmetic of Rational Points and Zero-cycles on Products of Kummer Varieties and K3 Surfaces
    Balestrieri, Francesca
    Newton, Rachel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (06) : 4255 - 4279