Rayleigh-Marangoni-B?nard instability in an Oldroyd-B fluid layer overlying a highly porous layer with a deformable surface

被引:3
|
作者
Yin, Chen [1 ,2 ]
Luan, Zhiman [1 ,2 ]
Wang, Shaowei [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
[2] MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
[3] Shandong Univ, Sch Civil Engn, Dept Engn Mech, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Rayleigh-Marangoni-B?nard convection; Deformable surface; Fluid -porous system; Oldroyd-B fluids; Chebyshev tau-QZ method; THERMAL-CONVECTION; BENARD INSTABILITY; VISCOELASTIC FLUID; STABILITY; ONSET; SYSTEM;
D O I
10.1016/j.ijheatmasstransfer.2023.124148
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes the linear stability analysis of Rayleigh-Marangoni-Benard convection with a de -formable surface in a fluid overlying a highly porous layer. Using the Chebyshev tau-QZ method, we investigate the oscillatory mode of both the Rayleigh and Marangoni instabilities for non-Newtonian flu-ids. The numerical results indicate that a deformable upper surface destabilizes the system. Moreover, the Marangoni instabilities in long-wave branches first decrease and then increase with increasing depth ratio, while the opposite effects are observed in short-wave branches. The Rayleigh instabilities decrease monotonically as the depth ratio increases. For certain reference parameters, the system becomes more stable as the Biot number and Galileo number increase. A greater strain retardation time and a smaller stress relaxation time lead to more stable Marangoni convection in long-wave branches, whereas these viscoelastic times have the opposite effects in short-wave branches. The influence of viscoelasticity on the Rayleigh instability is also investigated. Finally, the coupling mode of the two instabilities is studied in detail. Variations in the Marangoni number influence long-and short-wave branches differently. In-terestingly, there is an interval of the Marangoni number in short-wave branches for which no critical Rayleigh number exists.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Critical thickness for Rayleigh-Bénard instability to occur in a Leidenfrost liquid layer
    Luo, Cheng
    [J]. PHYSICS OF FLUIDS, 2024, 36 (09)
  • [42] Energetic balance for the Rayleigh-Stokes problem of an Oldroyd-B fluid
    Fetecau, C.
    Hayat, T.
    Zierep, J.
    Sajid, M.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 1 - 13
  • [43] HYDROMAGNETIC ROTATING FLOWS OF AN OLDROYD-B FLUID IN A POROUS MEDIUM
    Khan, I.
    Fakhar, K.
    Anwar, M. I.
    [J]. SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2012, 3 (01) : 89 - 95
  • [44] EXACT SOLUTION FOR RAYLEIGH-STOKES PROBLEMS OF AN OLDROYD-B FLUID IN A POROUS MEDIUM AND ROTATING FRAME
    Salah, Faisal
    Aziz, Zainal Abdul
    Amin, Norsarahaida S.
    Ching, Dennis Ling Chuan
    [J]. JOURNAL OF POROUS MEDIA, 2012, 15 (10) : 901 - 908
  • [45] Growth rates of Bénard-Marangoni convection in a fluid layer in the presence of a magnetic field
    Norihan Md Arifin
    Ishak Hashim
    [J]. Microgravity - Science and Technology, 2004, 15 : 22 - 27
  • [46] Control of Rayleigh-Bénard Convection in a Fluid Layer with Internal Heat Generation
    Z. Alloui
    Y. Alloui
    P. Vasseur
    [J]. Microgravity Science and Technology, 2018, 30 : 885 - 897
  • [47] Rayleigh-Benard-Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface
    Lyubimov, D. V.
    Lyubimova, T. P.
    Lobov, N. I.
    Alexander, J. I. D.
    [J]. PHYSICS OF FLUIDS, 2018, 30 (02)
  • [48] Effect of cross-diffusion on the stability of a triple-diffusive Oldroyd-B fluid layer
    K. R. Raghunatha
    I. S. Shivakumara
    M. S. Swamy
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [49] Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet
    Sajid, M.
    Abbas, Z.
    Javed, T.
    Ali, N.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2010, 88 (09) : 635 - 640
  • [50] Effect of cross-diffusion on the stability of a triple-diffusive Oldroyd-B fluid layer
    Raghunatha, K. R.
    Shivakumara, I. S.
    Swamy, M. S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):