Normalized solutions for Kirchhoff-Carrier type equation

被引:0
|
作者
Yang, Jie [1 ]
Chen, Haibo [2 ]
机构
[1] Huaihua Univ, Sch Math & Computat Sci, Huaihua 418008, Hunan, Peoples R China
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
基金
中国国家自然科学基金;
关键词
Kirchhoff-Carrier type equation; normalized solution; variational methods; EXISTENCE; MULTIPLICITY;
D O I
10.3934/math.20231102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Kirchhoff-Carrier type equation - (a + bM (|Vu|2, |u|T)) & UDelta;u - Au = |u|p-2u, in R3, where a, b > 0 are constants, A E R, p E (2, 6). By using a minimax procedure, we obtain infinitely solutions (vbn, An) with vbn having a prescribed L2-norm. Moreover, we give a convergence property of vbn as b & RARR; 0+.
引用
收藏
页码:21622 / 21635
页数:14
相关论文
共 50 条
  • [41] The Existence of Normalized Solutions to the Kirchhoff Equation with Potential and Sobolev Critical Nonlinearities
    Qihan He
    Zongyan Lv
    Zhongwei Tang
    [J]. The Journal of Geometric Analysis, 2023, 33
  • [42] The Existence of Normalized Solutions to the Kirchhoff Equation with Potential and Sobolev Critical Nonlinearities
    He, Qihan
    Lv, Zongyan
    Tang, Zhongwei
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [43] Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
    Yuan, Shuai
    Gao, Yuning
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 271 - 294
  • [44] Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems
    Xie, Weihong
    Chen, Haibo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (03) : 579 - 591
  • [45] Normalized solutions for nonlinear Kirchhoff type equations in high dimensions
    Kong, Lingzheng
    Chen, Haibo
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1282 - 1295
  • [46] The n-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed inhomogeneous conditions
    Le Xuan Truong
    Le Thi Phuong Ngoc
    Nguyen Thanh Long
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1908 - 1925
  • [47] Multiple Solutions for a Kirchhoff-Type Equation
    Pei, Ruichang
    Ma, Caochuan
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (03)
  • [48] General Decay and Blow-up Results of a Robin-Dirichlet Problem for a Pseudoparabolic Nonlinear Equation of Kirchhoff-Carrier Type with Viscoelastic Term
    Ngoc, Le Thi Phuong
    Triet, Nguyen Anh
    Duyen, Phan Thi My
    Long, Nguyen Thanh
    [J]. ACTA MATHEMATICA VIETNAMICA, 2023, 48 (01) : 151 - 191
  • [49] Multiple Solutions for a Kirchhoff-Type Equation
    Ruichang Pei
    Caochuan Ma
    [J]. Mediterranean Journal of Mathematics, 2020, 17
  • [50] Iterative method for Kirchhoff-Carrier type equations and its applications (vol 271, pg 332, 2021)
    Dai, Qiuyi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 : 112 - 114