Novel MoSSe/Bi2WO6 S-scheme heterojunction photocatalysts for significantly improved photoelectrochemical and photocatalytic performance

被引:42
|
作者
Xiong, Xiaoshan [1 ]
Yang, Han [2 ]
Zhang, Jun [1 ]
Lin, Jiacen [1 ]
Yang, Shuai [1 ]
Chen, Chao [1 ]
Xi, Junhua [1 ]
Kong, Zhe [1 ]
Song, Lihui [3 ]
Zeng, Jinghui [4 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, New Energy Mat Res Ctr, Hangzhou 310018, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Phys & Elect Engn, Xiangyang 441053, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[4] Zhejiang Tech Inst Econ, Coll Management & Technol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
MoSSe; Bi2WO6; S-scheme heterojunction; Photoelectrochemistry; Photocatalysis; HYDROGEN-PRODUCTION; CHARGE SEPARATION; CARBON NITRIDE; DEGRADATION; EFFICIENT; BI2WO6; FABRICATION; NANOPARTICLES; MICROSPHERES; TIO2;
D O I
10.1016/j.jallcom.2022.167784
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional MoSSe nanoplates demonstrate low internal resistance and outstanding reduction po-tential, while Bi2WO6 nanoparticles exhibit zero-dimensional appearance and high oxidation potential. Herein, novel MoSSe/Bi2WO6 step-scheme (S-scheme) heterojunction photocatalysts (MSSB) were prepared to combine the properties of those two materials. These catalysts were confirmed to have lower internal resistance (as low as 0.07 k omega), and higher carriers' separation efficiency due to the well-contacted two-dimensional/zero-dimensional structure. More importantly, the heterojunction catalysts displayed both good oxidation and reduction performance which have been confirmed by the conducted catalytic tests. With an optimized Bi2WO6 loading ratio, degradation rates (k) and photocurrent density of the MSSB2 sample were 2.09, and 8.31 times more than that of MoSSe, as well as 1.77, and 26.27 times more than that of Bi2WO6. Active species (superoxide radical center dot O2- and hydroxyl radical center dot OH) were detected by the electron spin resonance tool which could infer that a S-scheme heterojunction has already constructed between the Bi2WO6 and MoSSe. Driven by the MoSSe and band edge bending, the e- on the conduction band of Bi2WO6 readily slid toward MoSSe and recombines with the h+ on the valence band of MoSSe, while retaining the powerful e- and h+ with high redox potential on the CB of MoSSe and VB of Bi2WO6. This work further provided a novel strategy for developing S-scheme nano-heterojunction catalysts and revealed their pro-spects in photoelectrochemistry and photocatalysis. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts
    Yan, C. Y.
    Yi, W. T.
    Xiong, J.
    Ma, J.
    3RD INTERNATIONAL CONFERENCE ON ENERGY EQUIPMENT SCIENCE AND ENGINEERING (ICEESE 2017), 2018, 128
  • [32] Bi2WO6/AgInS2 S-scheme heterojunction: Efficient photodegradation of organic pollutant and toxicity evaluation
    Zhao, Yanyan
    Fan, Xu
    Zheng, Hongxing
    Liu, Enzhou
    Fan, Jun
    Wang, Xuejun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 170 : 200 - 211
  • [33] Bi2WO6/SiC composite photocatalysts with enhanced photocatalytic performance for dyes degradation
    Zheng, Xiao-hua
    Tang, Qi
    Zhang, Hao-wen
    Lu, Shi-hui
    Yang, Fang-er
    INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 140
  • [34] Constructing S-scheme heterojunction of octahedral flower-like ZnIn2S4/ Bi2WO6 nanocone with enhanced photocatalytic activity
    Liu, Zhongli
    Wang, Nan
    Wang, Haizeng
    Zhang, Xina
    Li, Jianhua
    Liu, Xiangju
    Duan, Jizhou
    Hou, Baorong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 915
  • [35] Ultrathin 2D/2D MoS2/Bi2WO6 S-scheme heterojunction for boosting photocatalytic degradation of ciprofloxacin
    Chen, Qi
    Liu, Cheng
    Liu, Rui
    Hou, Yidong
    Bi, Jinhong
    Yu, Jimmy C.
    Wu, Ling
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
  • [36] Engineering S-scheme Bi2WO6/CoAl-LDH heterostructure for enhancing photocatalytic redox ability
    Wu, Bin
    Zeng, Hong-Yan
    Xiong, Jie
    Peng, Jin-Feng
    Liu, Fang-Yuan
    Yang, Zhuo-Lin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [37] Facile synthesis of hierarchical S-scheme In2S3/Bi2WO6 heterostructures with enhanced photocatalytic activity
    Li, Qiang
    Wang, Lijie
    Song, Jupu
    Zhang, Linshen
    Shao, Chunfeng
    Li, Hong
    Zhang, Hemin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [38] Robust photoelectrocatalytic degradation of antibiotics by organic-inorganic PDISA/Bi2WO6 S-scheme heterojunction membrane
    Liu, Mingyue
    Wan, Yiyang
    Wang, Yong
    Xu, Jilin
    Li, Xibao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [39] Green and efficient photodegradation of norfloxacin with CsPbBr3-rGO/Bi2WO6 S-scheme heterojunction photocatalyst
    Zhao, Yanyan
    Liang, Xuhua
    Hu, Xiaoyun
    Fan, Jun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 626
  • [40] Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction
    Li, Shijie
    Cai, Mingjie
    Liu, Yanping
    Wang, Chunchun
    Yan, Ruyu
    Chen, Xiaobo
    ADVANCED POWDER MATERIALS, 2023, 2 (01):