A self-adaptive ensemble for user interest drift learning

被引:2
|
作者
Wang, Kun [1 ,2 ]
Xiong, Li [1 ]
Liu, Anjin [2 ]
Zhang, Guangquan [2 ]
Lu, Jie [2 ]
机构
[1] Shanghai Univ, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Broadway, Sydney, NSW 2007, Australia
关键词
Streaming data; Concept drift; Ensemble learning; Machine learning; User interest;
D O I
10.1016/j.neucom.2024.127308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
User interest reflects user preference which plays an important role in commercial decision -making. Learning and predicting user interest has attracted significant attention in recent years, however, user interest will change under uncertain environments as time passes, called user interest drift. This may adversely impact the accuracy of machine learning model prediction and lead to a delay in decision -making. How to detect and adapt to user interest drift in streaming data is an important problem which needs to be addressed. In this paper, we propose a novel method to detect user interest drift, called the topic -based user interest drift detection method (T-IDDM), which can recognize the severity of user interest drift. Then, a self -adaptive ensemble (SA -Ensemble) method with an adaptive weighted voting strategy is proposed to deal with user interest drift and reduce the time decay of the voting process. Next, a dynamic voting strategies selection process is proposed and applied to improve model robustness. Finally, an application study of user interest drift learning is presented to verify the proposed method. Twelve sequential online reviews datasets are collected and tested for the experiment. A comparison of our method with state-of-the-art benchmark methods shows its efficiency.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Continuous Parameter Pools in Ensemble Self-Adaptive Differential Evolution
    Iacca, Giovanni
    Caraffini, Fabio
    Neri, Ferrante
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 1529 - 1536
  • [22] Dealing with Drift of Adaptation Spaces in Learning-based Self-Adaptive Systems Using Lifelong Self-Adaptation
    Gheibi, Omid
    Weyns, Danny
    ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, 2024, 19 (01)
  • [23] Towards Self-Adaptive Metric Learning On the Fly
    Gao, Yang
    Li, Yi-Fan
    Chandra, Swarup
    Khan, Latifur
    Thuraisingham, Bhavani
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 503 - 513
  • [24] Self-Adaptive Approximate Mobile Deep Learning
    Knez, Timotej
    Machidon, Octavian
    Pejovic, Veljko
    ELECTRONICS, 2021, 10 (23)
  • [25] Self-Adaptive Evolutionary Extreme Learning Machine
    Cao, Jiuwen
    Lin, Zhiping
    Huang, Guang-Bin
    NEURAL PROCESSING LETTERS, 2012, 36 (03) : 285 - 305
  • [26] Self-adaptive learning based immune algorithm
    Bin Xu
    Yi Zhuang
    Yu Xue
    Zhou Wang
    Journal of Central South University, 2012, 19 : 1021 - 1031
  • [27] Self-Adaptive Evolutionary Extreme Learning Machine
    Jiuwen Cao
    Zhiping Lin
    Guang-Bin Huang
    Neural Processing Letters, 2012, 36 : 285 - 305
  • [28] Self-adaptive learning based immune algorithm
    Xu Bin
    Zhuang Yi
    Xue Yu
    Wang Zhou
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2012, 19 (04) : 1021 - 1031
  • [29] Federated Machine Learning as a Self-Adaptive Problem
    Baresi, Luciano
    Quattrocchi, Giovanni
    Rasi, Nicholas
    2021 INTERNATIONAL SYMPOSIUM ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING SYSTEMS (SEAMS 2021), 2021, : 41 - 47
  • [30] Self-adaptive learning for hybrid genetic algorithms
    Tarek A. El-Mihoub
    Adrian A. Hopgood
    Lars Nolle
    Evolutionary Intelligence, 2021, 14 : 1565 - 1579