Recent advances in the numerical solution of the Nonlinear Schrödinger Equation

被引:0
|
作者
Barletti, Luigi [1 ]
Brugnano, Luigi [1 ]
Gurioli, Gianmarco [1 ]
Iavernaro, Felice [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Florence, Italy
[2] Univ Bari Aldo Moro, Dipartimento Matemat, Bari, Italy
关键词
Nonlinear Schrodinger Equation; NLSE; Energy-conserving methods; Hamiltonian Boundary Value Methods; HBVMs; Spectral accuracy; BOUNDARY-VALUE METHODS; ENERGY-PRESERVING METHODS; BLENDED IMPLICIT METHODS; KUTTA-NYSTROM METHODS; SCHRODINGER-EQUATION; SYMPLECTIC METHODS; CONSERVING METHODS; GAUSS COLLOCATION; STEP METHODS; IMPLEMENTATION;
D O I
10.1016/j.cam.2024.115826
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this review we collect some recent achievements in the accurate and efficient solution of the Nonlinear Schrodinger Equation (NLSE), with the preservation of its Hamiltonian structure. This is achieved by using the energy -conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs) after a proper space semi-discretization. The main facts about HBVMs, along with their application for solving the given problem, are here recalled and explained in detail. In particular, their use as spectral methods in time, which allows efficiently solving the problems with spectral space-time accuracy.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A conservative numerical method for the fractional nonlinear Schrödinger equation in two dimensions
    Rongpei Zhang
    Yong-Tao Zhang
    Zhen Wang
    Bo Chen
    Yi Zhang
    [J]. Science China Mathematics, 2019, 62 : 1997 - 2014
  • [42] A new methodology for the construction of numerical methods for the approximate solution of the Schrödinger equation
    Z. A. Anastassi
    D. S. Vlachos
    T. E. Simos
    [J]. Journal of Mathematical Chemistry, 2009, 46 : 652 - 691
  • [43] Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation
    Z.A. Anastassi
    T.E. Simos
    [J]. Journal of Mathematical Chemistry, 2005, 37 : 281 - 293
  • [44] Soliton solution of nonlinear Schrödinger equation with higher order dispersion terms
    Pan Z.
    Zheng K.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (2) : 151 - 154
  • [45] A variable-step Numerov method for the numerical solution of the Schrödinger equation
    Jesús Vigo-Aguiar
    Higinio Ramos
    [J]. Journal of Mathematical Chemistry, 2005, 37 : 255 - 262
  • [46] The nonlinear Schrödinger equation in cylindrical geometries
    Krechetnikov, R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (15)
  • [47] Nonlinear Schrödinger Equation and the Hyperbolization Method
    A. D. Yunakovsky
    [J]. Computational Mathematics and Mathematical Physics, 2022, 62 : 1112 - 1130
  • [48] Symmetries of the Discrete Nonlinear Schrödinger Equation
    R. Hernández Heredero
    D. Levi
    P. Winternitz
    [J]. Theoretical and Mathematical Physics, 2001, 127 : 729 - 737
  • [49] On discretizations of the vector nonlinear Schrödinger equation
    Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO 80309, United States
    不详
    [J]. Phys Lett Sect A Gen At Solid State Phys, 5-6 (287-304):
  • [50] Nonlinear Schrödinger equation for integrated photonics
    Gravesen, Kevin Bach
    Gardner, Asger Brimnes
    Ulsig, Emil Zanchetta
    Stanton, Eric J.
    Hansen, Mikkel Torrild
    Thomsen, Simon Thorndahl
    Ahler, Lucas
    Volet, Nicolas
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (06) : 1451 - 1456