Modification of In-situ N-doped graphene coated ZnO composites as anode for high performance lithium-ion batteries

被引:3
|
作者
Li, Mingyuan [1 ]
Du, Huiwei [1 ]
Hong, Lun [1 ]
Zhang, Jingji [1 ]
Wang, Jiangying [1 ]
Zong, Quan [1 ]
Zhu, Zejie [1 ]
Meng, Xianhe [1 ]
Hong, Tao [1 ]
机构
[1] China Jiliang Univ, Coll Mat & Chem, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; ZnO; Lithium-ion batteries; Ion Diffusion; Core-shell; Yolk-shell; ENHANCED ELECTROCHEMICAL PERFORMANCE; CHEMICAL-VAPOR-DEPOSITION; FACILE SYNTHESIS; CARBON; SHELL; NANOPARTICLES; MICROSPHERES; FABRICATION; NANOSHEETS; NANOCOMPOSITES;
D O I
10.1016/j.jallcom.2023.171731
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of ZnO with high theoretical specific capacity as anode material for lithium-ion batteries is severely limited due to volume expansion during continuous cycling, slow lithium-ion diffusion, and poor conductivity. Here, ZnO nanoparticles were wrapped in N-doped multilayer graphene (ZnO@C) by chemical vapor deposition to improve specific capacity, rate performance, cycle stability, and conductivity. The thickness of the graphene layer and filling rate of ZnO in yolk-shell structure were investigated for the best electrochemical performance. The ZnO@C of yolk-shell structure with filling rate of 28% has a reversible specific capacity of 390 mAh/g after 200 cycles at 0.25 A/g, and achieves a capacity of 204.6 mAh/g at a high current of 1 A/g. The results show that N-doped porous graphene coated ZnO yolk-shell structure composites with etching treatment have good rate performance and cycle stability. The performance of electronic conductivity and lithium-ion diffusion is greatly improved, and the pseudocapacitive effect in the lithium storage mechanism is enhanced.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Synthesis of in-situ graphene encapsulated N-doped MoC nanoparticles as high-rate and long lifespan anode for lithium-ion storage
    Meng, Lingyi
    Wang, Chao
    MATERIALS LETTERS, 2019, 252 : 282 - 285
  • [22] Freestanding N-Doped Carbon Coated CuO Array Anode for Lithium-Ion and Sodium-Ion Batteries
    Li, Yuejiao
    Zhang, Menglu
    Qian, Ji
    Ma, Yitian
    Li, Yu
    Li, Wanlong
    Wang, Fujie
    Li, Li
    Wu, Feng
    Chen, Renjie
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [23] High performance potassium-ion and lithium-ion batteries anode based on natural N-doped carbon microspheres
    Ding, Wen
    Wu, Xiaozhong
    Miao, Zhichao
    Zhou, Jin
    Zhuo, Shuping
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 290
  • [24] N-doped carbon-encapsulated MnO@ graphene nanosheet as high-performance anode material for lithium-ion batteries
    Bai, Tao
    Zhou, Haochen
    Zhou, Xiangyang
    Liao, Qunchao
    Chen, Sanmei
    Yang, Juan
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (19) : 11608 - 11619
  • [25] N-doped carbon-encapsulated MnO@graphene nanosheet as high-performance anode material for lithium-ion batteries
    Tao Bai
    Haochen Zhou
    Xiangyang Zhou
    Qunchao Liao
    Sanmei Chen
    Juan Yang
    Journal of Materials Science, 2017, 52 : 11608 - 11619
  • [26] N-Doped Carbon Coated SnS/rGO Composite with Superior CyclicStability as Anode for Lithium-Ion Batteries
    Cheng, Deliang
    Lin, Min
    Liu, Jiangwen
    Yang, Lichun
    Chen, Yiwang
    Zhu, Min
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (12) : 4339 - 4347
  • [27] Graphene composites as anode materials in lithium-ion batteries
    M. Mazar Atabaki
    R. Kovacevic
    Electronic Materials Letters, 2013, 9 : 133 - 153
  • [28] Graphene Composites as Anode Materials in Lithium-Ion Batteries
    Atabaki, M. Mazar
    Kovacevic, R.
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 133 - 153
  • [29] MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries
    Liu, Xin
    Zhang, Shichao
    Xing, Yalan
    Wang, Shengbin
    Yang, Puheng
    Li, Honglei
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (11) : 9679 - 9683
  • [30] High performance Li2ZnTi3O8 coated with N-doped carbon as an anode material for lithium-ion batteries
    Chen, Chi
    Ai, Changchun
    He, Yunwei
    Yang, Shi
    Wu, Yuanxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 705 : 438 - 444