Coupling from the past for exponentially ergodic one-dimensional probabilistic cellular automata

被引:0
|
作者
Berard, Jean [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 rue Rene Descartes, F-67000 Strasbourg, France
来源
关键词
coupling from the past; cellular automata; FINITARY CODINGS;
D O I
10.1214/23-EJP1013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For every exponentially ergodic one-dimensional probabilistic cellular automaton with positive rates, we construct a locally defined coupling-from-the-past flow whose coalescence time has a finite exponential moment. This construction leads to a finite-size necessary and sufficient condition for exponential ergodicity of one-dimensional cellular automata. As a corollary, we prove that every sufficiently small perturbation of an exponentially ergodic one-dimensional cellular automaton is exponentially ergodic.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] One-dimensional pattern generation by cellular automata
    Martin Kutrib
    Andreas Malcher
    [J]. Natural Computing, 2022, 21 : 361 - 375
  • [22] One-Dimensional Pattern Generation by Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    [J]. CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 46 - 55
  • [23] Boundary Growth in One-Dimensional Cellular Automata
    Brummitt, Charles D.
    Rowland, Eric
    [J]. COMPLEX SYSTEMS, 2012, 21 (02): : 85 - 116
  • [24] THE STRUCTURE OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
    HILLMAN, D
    [J]. PHYSICA D, 1991, 52 (2-3): : 277 - 292
  • [25] Local information in one-dimensional cellular automata
    Helvik, T
    Lindgren, K
    Nordahl, MG
    [J]. CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 121 - 130
  • [26] Mixing properties of one-dimensional cellular automata
    Kleveland, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1755 - 1766
  • [27] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    [J]. PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [28] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8
  • [29] Model Checking One-Dimensional Cellular Automata
    Sutner, Klaus
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (03) : 213 - 224
  • [30] Universal One-dimensional Cellular Automata Derived from Turing Machines
    Martinez, Sergio J.
    Mendoza, Ivan M.
    Martinez, Genaro J.
    Ninagawa, Shigeru
    [J]. INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2019, 14 (02) : 121 - 138