A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges

被引:74
|
作者
Zhang, Wenxuan [1 ]
Li, Xin [1 ]
Deng, Yang [2 ]
Bing, Lidong [1 ]
Lam, Wai [3 ]
机构
[1] Alibaba Grp, DAMO Acad, Hangzhou 311121, Zhejiang, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
关键词
Aspect-based sentiment analysis; opinion mining; pre-trained language models; sentiment analysis; TRANSFER NETWORK; NEURAL-NETWORKS;
D O I
10.1109/TKDE.2022.3230975
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an important fine-grained sentiment analysis problem, aspect-based sentiment analysis (ABSA), aiming to analyze and understand people's opinions at the aspect level, has been attracting considerable interest in the last decade. To handle ABSA in different scenarios, various tasks are introduced for analyzing different sentiment elements and their relations, including the aspect term, aspect category, opinion term, and sentiment polarity. Unlike early ABSA works focusing on a single sentiment element, many compound ABSA tasks involving multiple elements have been studied in recent years for capturing more complete aspect-level sentiment information. However, a systematic review of various ABSA tasks and their corresponding solutions is still lacking, which we aim to fill in this survey. More specifically, we provide a new taxonomy for ABSA which organizes existing studies from the axes of concerned sentiment elements, with an emphasis on recent advances of compound ABSA tasks. From the perspective of solutions, we summarize the utilization of pre-trained language models for ABSA, which improved the performance of ABSA to a new stage. Besides, techniques for building more practical ABSA systems in cross-domain/lingual scenarios are discussed. Finally, we review some emerging topics and discuss some open challenges to outlook potential future directions of ABSA.
引用
下载
收藏
页码:11019 / 11038
页数:20
相关论文
共 50 条
  • [41] Aspect-Based Sentiment Quantification
    Matsiiako, Vladyslav
    Frasincar, Flavius
    Boekestijn, David
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 1718 - 1729
  • [42] Improving aspect-based sentiment analysis via aligning aspect embedding
    Tan, Xingwei
    Cai, Yi
    Xu, Jingyun
    Leung, Ho-Fung
    Chen, Wenhao
    Li, Qing
    NEUROCOMPUTING, 2020, 383 : 336 - 347
  • [43] Aspect-based Sentiment Analysis on Mobile Application Reviews
    Gunathilaka, Sadeep
    De Silva, Nisansa
    2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [44] Unsupervised model for aspect-based sentiment analysis in Spanish
    Henríquez, Carlos
    Briceño, Freddy
    Salcedo, Dixon
    IAENG International Journal of Computer Science, 2019, 46 (03)
  • [45] Exploring Scope Detection for Aspect-Based Sentiment Analysis
    Jiang, Xiaotong
    You, Peiwen
    Chen, Chen
    Wang, Zhongqing
    Zhou, Guodong
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 83 - 94
  • [46] Deep learning for aspect-based sentiment analysis: a review
    Zhu L.
    Xu M.
    Bao Y.
    Xu Y.
    Kong X.
    PeerJ Computer Science, 2022, 8
  • [47] TASS 2014 - The Challenge of Aspect-based Sentiment Analysis
    Villena Roman, Julio
    Garcia Morera, Janine
    Martinez Camara, Eugenio
    Jimenez Zafra, Salud M.
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2015, (54): : 61 - 68
  • [48] Aspect Term Information Enhancement Network for Aspect-Based Sentiment Analysis
    Shen, Yafei
    Chen, Zhuo
    Di, Jiaqi
    Meng, Ying
    2024 9th International Conference on Intelligent Computing and Signal Processing, ICSP 2024, 2024, : 1198 - 1204
  • [49] Adversarial Training for Aspect-Based Sentiment Analysis with BERT
    Karimi, Akbar
    Rossi, Leonardo
    Prati, Andrea
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8797 - 8803
  • [50] Ensemble Deep Learning for Aspect-based Sentiment Analysis
    Mohammadi, Azadeh
    Shaverizade, Anis
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 29 - 38