Multiscale Shared Learning for Fault Diagnosis of Rotating Machinery in Transportation Infrastructures

被引:23
|
作者
Chen, Zhe [1 ]
Tian, Shiqing [1 ]
Shi, Xiaotao [2 ]
Lu, Huimin [3 ]
机构
[1] Hohai Univ, Nanjing 210098, Peoples R China
[2] Hubei Int Sci & Technol Cooperat Base Fish Passag, Yichang 443002, Peoples R China
[3] Sensui, Kitakyushu, Fukuoka 8048550, Japan
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Machinery; Transportation; Vibrations; Feature extraction; Convolution; Time-frequency analysis; Deep learning; fault diagnosis; multiscale shared-learning network (MSSLN); transportation infrastructure; CONVOLUTIONAL NEURAL-NETWORK; BEARING DAMAGE; RECOGNITION; FEATURES; ENTROPY;
D O I
10.1109/TII.2022.3148289
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rotating machinery is ubiquitous, and its failures constitute a major cause of the failures of transportation infrastructures. Most fault-diagnosis methods for rotating machinery are based on vibration-signal analysis because vibrations directly reflect the transient regime of machinery elements. This article proposes a novel multiscale shared-learning network (MSSLN) architecture to extract and classify the fault features inherent to multiscale factors of vibration signals. The architecture fuses layer-wise activations with multiscale flows, to enable the network to fully learn the shared representation with consistency across multiscale factors. This characteristic helps MSSLN provide more faithful diagnoses than existing single- and multiscale methods. Experiments on bearing and gearbox datasets are used to evaluate the fault-diagnosis performance of transportation infrastructures. Extensive experimental results and comprehensive analyses demonstrate the superiority of the proposed MSSLN in fault diagnosis for bearings and gearboxes, the two foundational elements in transportation infrastructures.
引用
收藏
页码:447 / 458
页数:12
相关论文
共 50 条
  • [31] Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
    Li, Hongmei
    Huang, Jinying
    Yang, Xiwang
    Luo, Jia
    Zhang, Lidong
    Pang, Yu
    ENTROPY, 2020, 22 (08)
  • [32] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [33] Sparse representation learning for fault feature extraction and diagnosis of rotating machinery
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [34] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [35] An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery
    Tang, Zhi
    Bo, Lin
    Liu, Xiaofeng
    Wei, Daiping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (05)
  • [36] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [37] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    MEASUREMENT, 2023, 206
  • [38] Unsupervised domain adaptation transfer learning for the fault diagnosis in rotating machinery
    Zhou, Xiangqi
    Fu, Zhongguang
    Gao, Yucai
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (10): : 106 - 113
  • [39] An Ensemble Learning-Based Fault Diagnosis Method for Rotating Machinery
    Tian, Jing
    Azarian, Michael H.
    Pecht, Michael
    Niu, Gang
    Li, Chuan
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 96 - 101
  • [40] Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning
    Jiang, Guo-Qian
    Xie, Ping
    Wang, Xiao
    Chen, Meng
    He, Qun
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2017, 30 (06) : 1314 - 1324