Perceptions and Realities of Text-to-Image Generation

被引:6
|
作者
Oppenlaender, Jonas [1 ]
Silvennoinen, Johanna [1 ]
Paananen, Ville [2 ]
Visuri, Aku [2 ]
机构
[1] Univ Jyvaskyla, Jyvaskyla, Finland
[2] Univ Oulu, Oulu, Finland
关键词
generative AI; text-to-image generation;
D O I
10.1145/3616961.3616978
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative artificial intelligence (AI) is a widely popular technology that will have a profound impact on society and individuals. Less than a decade ago, it was thought that creative work would be among the last to be automated - yet today, we see AI encroaching on many creative domains. In this paper, we present the findings of a survey study on people's perceptions of text-to-image generation. We touch on participants' technical understanding of the emerging technology, their fears and concerns, and thoughts about risks and dangers of text-to-image generation to the individual and society. We find that while participants were aware of the risks and dangers associated with the technology, only few participants considered the technology to be a personal risk. The risks for others were more easy to recognize for participants. Artists were particularly seen at risk. Interestingly, participants who had tried the technology rated its future importance lower than those who had not tried it. This result shows that many people are still oblivious of the potential personal risks of generative artificial intelligence and the impending societal changes associated with this technology.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 50 条
  • [11] Zero-Shot Text-to-Image Generation
    Ramesh, Aditya
    Pavlov, Mikhail
    Goh, Gabriel
    Gray, Scott
    Voss, Chelsea
    Radford, Alec
    Chen, Mark
    Sutskever, Ilya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [12] Dense Text-to-Image Generation with Attention Modulation
    Kim, Yunji
    Lee, Jiyoung
    Kim, Jin-Hwa
    Ha, Jung-Woo
    Zhu, Jun-Yan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 7667 - 7677
  • [13] Visual Programming for Text-to-Image Generation and Evaluation
    Cho, Jaemin
    Zala, Abhay
    Bansal, Mohit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [14] MirrorGAN: Learning Text-to-image Generation by Redescription
    Qiao, Tingting
    Zhang, Jing
    Xu, Duanqing
    Tao, Dacheng
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1505 - 1514
  • [15] StyleDrop: Text-to-Image Generation in Any Style
    Sohn, Kihyuk
    Ruiz, Nataniel
    Lee, Kimin
    Chin, Daniel Castro
    Blok, Irina
    Chang, Huiwen
    Barber, Jarred
    Jiang, Lu
    Entis, Glenn
    Li, Yuanzhen
    Hao, Yuan
    Essa, Irfan
    Rubinstein, Michael
    Krishnan, Dilip
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [16] A taxonomy of prompt modifiers for text-to-image generation
    Oppenlaender, Jonas
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2024, 43 (15) : 3763 - 3776
  • [17] Text-to-Image Generation Method Based on Image-Text Semantic Consistency
    Xue Z.
    Xu Z.
    Lang C.
    Feng S.
    Wang T.
    Li Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (09): : 2180 - 2190
  • [18] Generative adversarial text-to-image generation with style image constraint
    Zekang Wang
    Li Liu
    Huaxiang Zhang
    Dongmei Liu
    Yu Song
    Multimedia Systems, 2023, 29 : 3291 - 3303
  • [19] Generative adversarial text-to-image generation with style image constraint
    Wang, Zekang
    Liu, Li
    Zhang, Huaxiang
    Liu, Dongmei
    Song, Yu
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3291 - 3303
  • [20] Improving text-to-image generation with object layout guidance
    Jezia Zakraoui
    Moutaz Saleh
    Somaya Al-Maadeed
    Jihad Mohammed Jaam
    Multimedia Tools and Applications, 2021, 80 : 27423 - 27443