Spanners in randomly weighted graphs: Euclidean case

被引:0
|
作者
Frieze, Alan [1 ]
Pegden, Wesley [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random points; shortest paths; spanners; STRETCH FACTOR;
D O I
10.1002/jgt.22950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a connected graph G=(V,E) $G=(V,E)$ and a length function l:E -> R $\ell :E\to {\mathbb{R}}$ we let dv,w ${d}_{v,w}$ denote the shortest distance between vertex v $v$ and vertex w $w$. A t $t$-spanner is a subset E 'subset of E $E<^>{\prime} \subseteq E$ such that if dv,w ' ${d}_{v,w}<^>{<^>{\prime} }$ denotes shortest distances in the subgraph G '=(V,E ') $G<^>{\prime} =(V,E<^>{\prime} )$ then dv,w '<= tdv,w ${d}_{v,w}<^>{<^>{\prime} }\le t{d}_{v,w}$ for all v,w is an element of V $v,w\in V$. We study the size of spanners in the following scenario: we consider a random embedding Xp ${{\mathscr{X}}}_{p}$ of Gn,p ${G}_{n,p}$ into the unit square with Euclidean edge lengths. For epsilon>0 $\epsilon \gt 0$ constant, we prove the existence w.h.p. of (1+epsilon) $(1+\epsilon )$-spanners for Xp ${{\mathscr{X}}}_{p}$ that have O epsilon(n) ${O}_{\epsilon }(n)$ edges. These spanners can be constructed in O epsilon(n2logn) ${O}_{\epsilon }({n}<^>{2}\mathrm{log}n)$ time. (We will use O epsilon ${O}_{\epsilon }$ to indicate that the hidden constant depends on epsilon $\varepsilon $). There are constraints on p $p$ preventing it going to zero too quickly.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [1] Spanners in randomly weighted graphs: Independent edge lengths
    Frieze, Alan
    Pegden, Wesley
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 68 - 74
  • [2] ON SPARSE SPANNERS OF WEIGHTED GRAPHS
    ALTHOFER, I
    DAS, G
    DOBKIN, D
    JOSEPH, D
    SOARES, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (01) : 81 - 100
  • [3] On geometric spanners of Euclidean and unit disk graphs
    Kanj, Iyad A.
    Perkovic, Ljubomir
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 409 - 420
  • [4] GENERATING SPARSE SPANNERS FOR WEIGHTED GRAPHS
    ALTHOFER, I
    DAS, G
    DOBKIN, D
    JOSEPH, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 447 : 26 - 37
  • [5] Testing Euclidean Spanners
    Hellweg, Frank
    Schmidt, Melanie
    Sohler, Christian
    ALGORITHMS-ESA 2010, 2010, 6346 : 60 - 71
  • [6] Testing Euclidean Spanners
    Hellweg, Frank
    Schmidt, Melanie
    Sohler, Christian
    PROPERTY TESTING: CURRENT RESEARCH AND SURVEYS, 2010, 6390 : 306 - 311
  • [7] Light spanners and approximate TSP in weighted graphs with forbidden minors
    Grigni, M
    Sissokho, P
    PROCEEDINGS OF THE THIRTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2002, : 852 - 857
  • [8] Truly Optimal Euclidean Spanners
    Le, Hung
    Solomon, Shay
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 1078 - 1100
  • [9] ON SPANNERS AND LIGHTWEIGHT SPANNERS OF GEOMETRIC GRAPHS
    Kanj, Iyad A.
    Perkovic, Ljubomir
    Xia, Ge
    SIAM JOURNAL ON COMPUTING, 2010, 39 (06) : 2132 - 2161
  • [10] Euclidean Spanners in High Dimensions
    Har-Peled, Sariel
    Indyk, Piotr
    Sidiropoulos, Anastasios
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 804 - 809