High-Performance Layered Ni-Rich Cathode Materials Enabled by Stress-Resistant Nanosheets

被引:3
|
作者
Zhu, Hekang [1 ,2 ]
Yang, Tingting [1 ]
Lee, Pui-Kit [2 ]
Yin, Zijia [1 ]
Tang, Yu [1 ]
Li, Tianyi [3 ]
Gallington, Leighanne C. [3 ]
Ren, Yang [1 ]
Yu, Denis Y. W. [2 ,4 ]
Liu, Qi [1 ,5 ]
机构
[1] City Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[2] Univ Hong Kong, Sch Energy & Environm, Hong Kong, Peoples R China
[3] Argonne Natl Lab, X Ray Sci Div, Lemont, IL 60439 USA
[4] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat GREEN, Tsukuba, Ibaraki 3050044, Japan
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
国家重点研发计划;
关键词
Ni-rich cathodes; nanosheet grains; cracking; cycling stability; diffusion rates; ENERGY-DENSITY; OXIDE CATHODES; COULOMBIC EFFICIENCY; NCA CATHODE; LITHIUM; CAPACITY; LI; TRANSITION; STABILITY; BATTERIES;
D O I
10.1021/acsami.2c20405
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Layered O3-type transition metal oxides are promising cathode candidates for high-energy-density Li-ion batteries. However, the structural instability at the highly delithiated state and low kinetics at the fully lithiated state are arduous challenges to overcome. Here, a facile approach is developed to make secondary particles of Ni-rich materials with nanosheet primary grains. Because the alignment of the primary grains reduces internal stress buildup within the particle during charge-discharge and provides straightforward paths for Li transport, the as-synthesized Ni-rich materials do not undergo cracking upon cycling with higher overall Li+ ion diffusion rates. Specifically, a LiNi0.75Co0.14Mn0.11O2 cathode with nanosheet grains delivers a high reversible capacity of 206 mAh g-1 and shows ultrahigh cycling stability, e.g., 98% capacity retention over 500 cycles in a full cell with a graphite anode.
引用
收藏
页码:8046 / 8053
页数:8
相关论文
共 50 条
  • [31] Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials
    HU Jiang-Tao
    ZHANG Ji-Guang
    ChineseJournalofStructuralChemistry, 2019, 38 (12) : 2005 - 2008
  • [32] Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries
    Doo, Sung Wook
    Lee, Suyeon
    Kim, Hanseul
    Choi, Jin H.
    Lee, Kyu Tae
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6246 - 6253
  • [33] Different thermal degradation mechanisms: Role of aluminum in Ni-rich layered cathode materials
    Jo, Eunmi
    Park, Jae-Ho
    Park, Junbeom
    Hwang, Jieun
    Chung, Kyung Yoon
    Nam, Kyung-Wan
    Kim, Seung Min
    Chang, Wonyoung
    NANO ENERGY, 2020, 78 (78)
  • [34] Incorporation of Titanium into Ni-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Kim, Jong Hwa
    Kim, Hyuntae
    Kim, Won-Joo
    Kim, Yong-Chan
    Jung, Jae Yup
    Rhee, Dong Young
    Song, Jun Ho
    Cho, Woosuk
    Park, Min-Sik
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) : 12204 - 12211
  • [35] High performance and low air sensitivity for Ni-rich Co-free cathode materials
    Peng, Zhongdong
    Li, Huan
    Zhao, Baibin
    Hu, Guorong
    Du, Ke
    Cao, Yanbing
    SOLID STATE IONICS, 2024, 411
  • [36] Ni-Rich Layered Cathode Materials by a Mechanochemical Method for High-Energy Lithium-Ion Batteries
    Tron, Artur
    Hong, Meihua
    Park, Yeong Don
    Kim, Jiyong
    Mun, Junyoung
    CHEMISTRYSELECT, 2020, 5 (46): : 14596 - 14601
  • [37] Interphasial engineering for Ni-rich NMC cathode materials
    Shadike, Zulipiya
    Chen, Yiming
    Hu, Enyuan
    Zhang, Junliang
    Yang, Xiao-Qing
    TRENDS IN CHEMISTRY, 2023, 5 (10): : 775 - 787
  • [38] Surface Modification Strategies for Improving the Cycling Performance of Ni-Rich Cathode Materials
    Weber, Daniel
    Tripkovic, Dordije
    Kretschmer, Katja
    Bianchini, Matteo
    Brezesinski, Torsten
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 2020 (33) : 3117 - 3130
  • [39] High-Performance Sulfide All-Solid-State Batteries Enabled by High-Voltage Ni-Rich Cathode with a Conformal and Conductive Protective Layer
    Zhou, Xing
    Deng, Linghao
    Zhang, Kai
    Zhang, Zhiyong
    Zhang, Lili
    Li, Zhi
    Kong, Taoyi
    Xie, Yihua
    Wang, Yonggang
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (06) : 2524 - 2532
  • [40] Computational studies of structure, composition, and electrochemical behavior of high-performance Ni-rich layered materials for lithium-ion batteries
    Dixit, Mudit
    Markovsky, Boris
    Aurbach, Doron
    Major, Dan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254