A biosensor based on nanocomposite of g-C3N4 and polyaniline for detection of fentanyl as a doping agent in sports

被引:4
|
作者
Hu, Guangyi [1 ]
Li, Haixia [2 ]
Liu, Fei [1 ]
机构
[1] Hebei Petr Univ Technol, Dept Sports Hlth & Art Educ, 2 Xueyuan Rd, Chengde, Peoples R China
[2] Harbin Inst Phys Educ, Winter Olymp Coll, Harbin 150001, Heilongjiang, Peoples R China
关键词
Polyaniline; Nanocomposite; Fentanyl; Electrochemical sensor; Urine sample; ELECTROCHEMICAL SENSOR; MASS-SPECTROMETRY; HUMAN PLASMA; HUMAN URINE; PHARMACOKINETICS; IDENTIFICATION; PERFORMANCE; METABOLITES;
D O I
10.1016/j.aej.2023.12.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Significant ethical and health concerns have been brought up recently by the illegitimate use of highly strong synthetic opioids, including fentanyl, as doping agents in sports. Therefore, the requirement for quick and accurate detection techniques to spot illicit drugs in athletes has never been more important. Our study presents a novel biosensor for the sensitive detection of fentanyl based on a nanocomposite of polyaniline (PANI) and a glassy carbon electrode modified with g-C3N4, which is the first of its kind. The g-C3N4-PANI nanocomposite's successful synthesis was confirmed by structural investigations performed using SEM, XRD, and FT-IR. Studies on the electrochemical effects of g-C3N4 and PANI using cyclic voltammetry (CV) and amperometry revealed that the g-C3N4-PANI hybrid composite enhanced the sensitivity, selectivity, stability, and accuracy of fentanyl measurement. With a sensitivity of 0.45445 mu A/mu M, the electrochemical measurements revealed a broad and consistent linear range spanning from 10 to 920 mu M. The detection threshold was established at 0.006 mu M. Additionally, its performance was assessed using several real -samples made from athlete pee. The findings displayed satisfactory recovery values ranging from 90.00% to 98.00% and low relative standard deviation values (less than 4.74%) and demonstrated the g-C3N4/PANI nanocomposite-based biosensor has the potential to be an effective anti -doping control tool, opening the door for its practical use in maintaining the fairness and safety of competitive sports. The analysis of the nanocomposite showed that the combination of PANI and g-C3N4 resulted in a material with enhanced electrochemical properties, which contributed to the high performance of the biosensor.
引用
收藏
页码:515 / 523
页数:9
相关论文
共 50 条
  • [31] Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts
    Zou, Jing
    Liao, Guodong
    Wang, Haitao
    Ding, Yaobin
    Wu, Pingxiu
    Hsu, Jyh-Ping
    Jiang, Jizhou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 911
  • [32] Influence of Pt and P doping on the performance of g-C3N4 monolayer
    Gorai, Deepak Kumar
    Kundu, Tarun
    MATERIALS AND MANUFACTURING PROCESSES, 2020, 35 (06) : 625 - 634
  • [33] A Novel Sensing Platform Based on Metal Tungstate/g-C3N4 Nanocomposite for the Sensitive Electrochemical Detection of Ascorbic Acid
    Nahdi, Amira
    Bibani, Malek
    Touati, Fathi
    Dhaouadi, Hassouna
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (01) : 87 - 98
  • [34] A Novel Sensing Platform Based on Metal Tungstate/g-C3N4 Nanocomposite for the Sensitive Electrochemical Detection of Ascorbic Acid
    Amira Nahdi
    Malek Bibani
    Fathi Touati
    Hassouna Dhaouadi
    Iranian Journal of Science, 2024, 48 : 87 - 98
  • [35] CoFe2O4 supported g-C3N4 nanocomposite for the sensitive electrochemical detection of dopamine
    Joseph, Xavier Benadict
    Umesh, N. M.
    Wang, Sea-Fue
    Jesila, J. Antolin
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (38) : 18131 - 18138
  • [36] Study of foam drainage agent based on g-C3N4 nanosheets reinforced stabilization
    Lai, Lidan
    Zhang, Tailiang
    Zheng, Cunchuan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 657
  • [37] Detection for glutathione based on Pd/g-C3N4 as the peroxidase mimetic enzyme
    Wang, Yitian
    Liu, Wanting
    Cao, Shiying
    Ma, Junkai
    Zhang, Ainv
    Chinese Journal of Analysis Laboratory, 2024, 43 (10) : 1462 - 1467
  • [38] Non-enzymatic glucose sensor based on a g-C3N4/NiO/CuO nanocomposite
    Lotfi, Z.
    Gholivand, M. B.
    Shamsipur, M.
    ANALYTICAL BIOCHEMISTRY, 2021, 616 (616)
  • [39] The effects of g-C3N4/biochar and g-C3N4 on bacterial community in riverbed sediment
    Yao Tang
    Xuemei Hu
    Zhenggang Xu
    Xiaoyong Chen
    Yelin Zeng
    Guangjun Wang
    Yonghong Wang
    Gaoqiang Liu
    Yunlin Zhao
    Yaohui Wu
    Environmental Science and Pollution Research, 2022, 29 : 85286 - 85299
  • [40] The effects of g-C3N4/biochar and g-C3N4 on bacterial community in riverbed sediment
    Tang, Yao
    Hu, Xuemei
    Xu, Zhenggang
    Chen, Xiaoyong
    Zeng, Yelin
    Wang, Guangjun
    Wang, Yonghong
    Liu, Gaoqiang
    Zhao, Yunlin
    Wu, Yaohui
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (56) : 85286 - 85299