Enhancing Hydrogen Peroxide Synthesis through Coordination Engineering of Single-Atom Catalysts in the Oxygen Reduction Reaction: A Review

被引:1
|
作者
He, Huawei [1 ]
Wang, Jiatang [1 ]
Shi, Jiawei [1 ]
Li, Jing [1 ]
Cai, Weiwei [1 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Hydrogen Energy Technol Innovat Ctr Hubei Prov, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
electrocatalysis; hydrogen peroxide; two-electron oxygen reduction reaction; coordination engineering; single-atom catalysts; ELECTROCHEMICAL SYNTHESIS; H2O2; CARBON; NANOPARTICLES; SITES; WATER;
D O I
10.3390/en16186616
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen peroxide (H2O2) is an important chemical with a diverse array of applications. However, the existing scenario of centralized high-concentration production is in contrast with the demand for low-concentration decentralized production. In this context, the on-site green and efficient two-electron oxygen reduction reaction (ORR) for H2O2 production has developed into a promising synthetic approach. The development of low-cost, highly active, and durable advanced catalysts is the core requirement for realizing this approach. In recent years, single-atom catalysts (SACs) have become a research hotspot owing to their maximum atom utilization efficiency, tunable electronic structure, and exceptional catalytic performance. The coordination engineering of SACs is one of the key strategies to unlock their full potential for electrocatalytic H2O2 synthesis and holds significant research value. Despite considerable efforts, precisely controlling the electronic structure of active sites in SACs remains challenging. Therefore, this review summarizes the latest progress in coordination engineering strategies for SACs, aiming to elucidate the relevance between structure and performance. Our goal is to provide valuable guidance and insights to aid in the design and development of high-performance SACs for electrocatalytic H2O2 synthesis.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Electrocatalytic Oxygen Reduction to Hydrogen Peroxide on Graphdiyne-Based Single-Atom Catalysts: First-Principles Studies
    Lian, Kangkang
    Wan, Qiang
    Jiang, Rong
    Lin, Sen
    CATALYSTS, 2023, 13 (02)
  • [32] Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction
    Chen, Guangbo
    Zhong, Haixia
    Feng, Xinliang
    CHEMICAL SCIENCE, 2021, 12 (48) : 15802 - 15820
  • [33] Coordination engineering for single-atom catalysts in bifunctional oxidation NO and mercury
    Yang, Weijie
    Zhou, Binghui
    Chen, Liugang
    Shi, Ruiyang
    Li, Hao
    Liu, Xiaoshuo
    Gao, Zhengyang
    FUEL, 2023, 349
  • [34] Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction
    Yang, Liu
    Xu, Haoxiang
    Liu, Huibing
    Zeng, Xiaofei
    Cheng, Daojian
    Huang, Yan
    Zheng, Lirong
    Cao, Rui
    Cao, Dapeng
    RESEARCH, 2020, 2020
  • [35] Flame-Assisted Synthesis of O-Coordinated Single-Atom Catalysts for Efficient Electrocatalytic Oxygen Reduction and Hydrogen Evolution Reaction
    Li, Jinze
    Li, Hao
    Xie, Wenfu
    Li, Shijin
    Song, Yuke
    Fan, Kui
    Lee, Jin Yong
    Shao, Mingfei
    SMALL METHODS, 2022, 6 (01)
  • [36] Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
    Jiang, Kun
    Back, Seoin
    Akey, Austin J.
    Xia, Chuan
    Hu, Yongfeng
    Liang, Wentao
    Schaak, Diane
    Stavitski, Eli
    Norskov, Jens K.
    Siahrostami, Samira
    Wang, Haotian
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [37] Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
    Kun Jiang
    Seoin Back
    Austin J. Akey
    Chuan Xia
    Yongfeng Hu
    Wentao Liang
    Diane Schaak
    Eli Stavitski
    Jens K. Nørskov
    Samira Siahrostami
    Haotian Wang
    Nature Communications, 10
  • [38] Single-Atom Alloys for the Electrochemical Oxygen Reduction Reaction
    Darby, Matthew T.
    Stamatakis, Michail
    CHEMPHYSCHEM, 2021, 22 (05) : 499 - 508
  • [39] Regeneration of single-atom catalysts deactivated under acid oxygen reduction reaction conditions
    Zhao, Chang-Xin
    Ren, Ding
    Wang, Juan
    Liu, Jia-Ning
    Tang, Cheng
    Chen, Xiao
    Li, Bo-Quan
    Zhang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 478 - 484
  • [40] Regeneration of single-atom catalysts deactivated under acid oxygen reduction reaction conditions
    Zhao, Chang-Xin
    Ren, Ding
    Wang, Juan
    Liu, Jia-Ning
    Tang, Cheng
    Chen, Xiao
    Li, Bo-Quan
    Zhang, Qiang
    Journal of Energy Chemistry, 2022, 73 : 478 - 484