Unitary representations of type B rational Cherednik algebras and crystal combinatorics

被引:1
|
作者
Norton, Emily [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Sibson Bldg,Parkwood Rd, Canterbury CT2 7FS, Kent, England
关键词
rational Cherednik algebra; unitary representation; Fock space; affine Lie algebra crystal; combinatorial representation theory; SYMMETRIC-GROUPS;
D O I
10.4153/S0008414X21000559
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare crystal combinatorics of the level 2 Fock space with the classification of unitary irreducible representations of type B rational Cherednik algebras to study how unitarity behaves under parabolic restriction. We show that the crystal operators that remove boxes preserve the combinatorial conditions for unitarity, and that the parabolic restriction functors categorifying the crystals send irreducible unitary representations to unitary representations. Furthermore, we find the supports of the unitary representations.
引用
收藏
页码:140 / 169
页数:30
相关论文
共 50 条
  • [41] On category O for cyclotomic rational Cherednik algebras
    Gordon, I. G.
    Losev, I.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (05) : 1017 - 1079
  • [42] Finite dimensional representations of the rational Cherednik algebra
    Dezélée, C
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2003, 131 (04): : 465 - 482
  • [43] The Dunkl weight function for rational Cherednik algebras
    Shelley-Abrahamson, Seth
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (01):
  • [44] ENDOMORPHISMS OF VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS
    G. BELLAMY
    Transformation Groups, 2014, 19 : 699 - 720
  • [45] ENDOMORPHISMS OF VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS
    Bellamy, G.
    TRANSFORMATION GROUPS, 2014, 19 (03) : 699 - 720
  • [46] A CASSELMAN–OSBORNE THEOREM FOR RATIONAL CHEREDNIK ALGEBRAS
    JING-SONG HUANG
    KAYUE DANIEL WONG
    Transformation Groups, 2018, 23 : 75 - 99
  • [47] On BGG resolutions of unitary modules for quiver Hecke and Cherednik algebras
    Bowman, C.
    Norton, E.
    Simental, J.
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [48] On BGG resolutions of unitary modules for quiver Hecke and Cherednik algebras
    C. Bowman
    E. Norton
    J. Simental
    Selecta Mathematica, 2022, 28
  • [49] Quiver Varieties, Category O for Rational Cherednik Algebras, and Hecke Algebras
    Gordon, I. G.
    INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2008,
  • [50] ON THE SMOOTHNESS OF CENTRES OF RATIONAL CHEREDNIK ALGEBRAS IN POSITIVE CHARACTERISTIC
    Bellamy, Gwyn
    Martino, Maurizio
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55A : 27 - 54