Triple hole transporting and passivation layers for efficient NiOX-based wide-bandgap perovskite solar cells

被引:0
|
作者
Ren, Ningyu [1 ,2 ,3 ,4 ,5 ,6 ]
Sun, Cong [3 ,4 ,5 ,6 ]
Zhu, Chengjun [1 ,2 ]
Jin, Lu [3 ,4 ,5 ,6 ]
Li, Tiantian [1 ,2 ]
Li, Renjie [3 ,4 ,5 ,6 ]
Chen, Bingbing [3 ,4 ,5 ,6 ]
Shi, Biao [3 ,4 ,5 ,6 ]
Zhao, Ying [3 ,4 ,5 ,6 ]
Zhang, Xiaodan [3 ,4 ,5 ,6 ]
机构
[1] Inner Mongolia Univ, Sch Phys Sci & Technol, Hohhot 010021, Peoples R China
[2] Key Lab Semicond Photovolta Technol Univ Inner Mon, Hohhot 010021, Peoples R China
[3] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Renewable Energy Convers & Storage Ctr, Solar Energy Convers Ctr, Tianjin 300350, Peoples R China
[4] Key Lab Photoelect Thin Film Devices & Technol Tia, Tianjin 300350, Peoples R China
[5] Minist Educ, Engn Res Ctr Thin Film Photoelect Technol, Tianjin 300350, Peoples R China
[6] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1063/5.0146114
中图分类号
O59 [应用物理学];
学科分类号
摘要
In order to fabricate nickel oxide (NiOX)-based perovskite solar cells with high efficiency and stability, adverse reaction and lattice mismatch are two urgent problems to be overcome. In this respect, interface engineering was carried out by multi-layer passivation NiOX HTLs (NiOX/2PACz/Poly-TPD/PEAI) to provide optimized interface contact between NiOX and perovskite, ameliorate band alignment, and saturate the defect states. Application of 2PACz avoids direct contact of the hydroxyl groups (which causes degeneration of a device), improves conductivity, and reduces interfacial defects. The poly-TPD modification can provide an appropriate band alignment at the interface of NiOX/perovskite. PEAI was used to modify the Poly-TPD surface, and its -NH3 group can passivate unbonded Pb ions of perovskite. Thus, compared with previously reported single-function passivation materials, the multilayer passivation proposed in this paper integrates multiple functions. As a result, the NiOX/2PACz/Poly-TPD/PEAI-based wide bandgap PSCs obtain a champion power conversion efficiency (PCE) of 20.21% and maintain over 95% of their initial PCE values after storage in a nitrogen atmosphere for 1000 h. This finding provides a practical approach for fabricating high-performance regular PSCs with NiOX-based HTLs and supports their commercialization.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells
    Du, Shuxian
    Yang, Jing
    Qu, Shujie
    Lan, Zhineng
    Sun, Tiange
    Dong, Yixin
    Shang, Ziya
    Liu, Dongxue
    Yang, Yingying
    Yan, Luyao
    Wang, Xinxin
    Huang, Hao
    Ji, Jun
    Cui, Peng
    Li, Yingfeng
    Li, Meicheng
    MATERIALS, 2022, 15 (09)
  • [22] Interface Engineering of BCP Buffer Layers in Planar Heterojunction Perovskite Solar Cells With NiOx Hole Transporting Layers
    He, Chunfeng
    Zhang, Fayin
    Zhao, Xin
    Lin, Changjian
    Ye, Meidan
    FRONTIERS IN PHYSICS, 2018, 6
  • [23] Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Shen, Xinyi
    Gallant, Benjamin M.
    Holzhey, Philippe
    Smith, Joel A.
    Elmestekawy, Karim A.
    Yuan, Zhongcheng
    Rathnayake, P. V. G. M.
    Bernardi, Stefano
    Dasgupta, Akash
    Kasparavicius, Ernestas
    Malinauskas, Tadas
    Caprioglio, Pietro
    Shargaieva, Oleksandra
    Lin, Yen-Hung
    McCarthy, Melissa M.
    Unger, Eva
    Getautis, Vytautas
    Widmer-Cooper, Asaph
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [24] Grain Regrowth and Bifacial Passivation for High-Efficiency Wide-Bandgap Perovskite Solar Cells
    Liu, Zhou
    Zhu, Changhuai
    Luo, Haowen
    Kong, Wenchi
    Luo, Xin
    Wu, Jinlong
    Ding, Changzeng
    Chen, Yiyao
    Wang, Yurui
    Wen, Jin
    Gao, Yuan
    Tan, Hairen
    ADVANCED ENERGY MATERIALS, 2023, 13 (02)
  • [25] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [26] Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells
    Fang, Zhimin
    Jia, Lingbo
    Yan, Nan
    Jiang, Xiaofen
    Ren, Xiaodong
    Yang, Shangfeng
    Liu, Shengzhong
    INFOMAT, 2022, 4 (06)
  • [27] Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells
    Ma, Xiaohui
    Yang, Liqun
    Shang, Xueni
    Li, Mengjia
    Gao, Deyu
    Wu, Cuncun
    Zheng, Shijian
    Zhang, Boxue
    Chen, Jiangzhao
    Chen, Cong
    Song, Hongwei
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [28] Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells
    Guang Yang
    Zhenyi Ni
    Zhengshan J. Yu
    Bryon W. Larson
    Zhenhua Yu
    Bo Chen
    Abdulwahab Alasfour
    Xun Xiao
    Joseph M. Luther
    Zachary C. Holman
    Jinsong Huang
    Nature Photonics, 2022, 16 : 588 - 594
  • [29] Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells
    Ruijia Zhang
    Yun Chen
    Jian Xiong
    Xiaowen Liu
    Journal of Materials Science, 2018, 53 : 4507 - 4514
  • [30] Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells
    Zhang, Ruijia
    Chen, Yun
    Xiong, Jian
    Liu, Xiaowen
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (06) : 4507 - 4514