Betaine ameliorates high glucose-induced oxidative stress in granulosa cells (vol 35, pg 395, 2023)

被引:2
|
作者
Abnosi, Mohammad Hussein [1 ]
Tabandeh, Mohammad Reza [1 ]
Mosavi-Aroo, Fatmeh [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Dept Biochem & Mol Biol, Fac Vet Med, Ahvaz, Iran
关键词
D O I
10.1071/RD22247_CO
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CONTEXT: In diabetes, abnormalities of granulosa cells (GCs) and steroidogenesis are associated with hyperglycaemia-induced oxidative stress. Betaine has beneficial effect in experimental model of diabetes by reducing oxidative stress, inflammation, and apoptosis. AIMS: In this study we investigate the effects of betaine to prevent oxidative stress in GCs induced by high glucose and improve steroidogenesis. METHODS: Primary GCs, isolated from ovarian follicles of C57BL/6 mice were cultured in 5mM (control) and 30mM (hyperglycaemia) of glucose and in presence of 5mM of betaine for 24h. Then antioxidant enzymes, malondialdehyde, oestradiol and progesterone were measured. In addition, the expression of Nrf2 and NF-κB , antioxidant enzymes (Sod1 , Gpx and Cat ) were analysed by qRT-PCR assay. KEY RESULTS: We observed significant (P NF-κB and down-regulation of Nrf2 due to high concentration of glucose. Also significant (P Cat , Sod1 and GPx ) and activity reduction of these enzymes as well as significant (P NF-κB and up-regulating the expression of Nrf2 , Cat , Sod1 and GPx . It was also shown that betaine in the presence of FSH significantly (P Conclusion: Betaine compensated the antioxidant stress in mouse GCs under hyperglycaemic condition via regulation of Nrf2/NF-κB at transcription level. IMPLICATIONS: As betaine is a natural product and no side effect has been reported to today, we suggest more research needs to be carried out especially on patients whom suffer from diabetes to find the probability of using betaine as a therapeutic agent.
引用
收藏
页码:492 / 492
页数:1
相关论文
共 50 条
  • [41] Thevetiaflavone Ameliorates High Glucose-Induced Oxidative Stress and Fibrosis via Nrf2/TGF-β1 Pathway in Glomerular Mesangial Cells
    Yao, Huankai
    Li, Yafeng
    Duan, Yinyin
    Wu, Huiling
    Li, Yan
    Wei, Qunli
    LATIN AMERICAN JOURNAL OF PHARMACY, 2019, 38 (09): : 1886 - 1893
  • [42] High glucose-induced oxidative stress accelerates myogenesis by altering SUMO reactions
    Liu, Xiuxiu
    Heras, Gabriel
    Lauschke, Volker M.
    Mi, Jia
    Tian, Geng
    Gastaldello, Stefano
    EXPERIMENTAL CELL RESEARCH, 2020, 395 (02)
  • [43] The role of oxidative stress in high glucose-induced apoptosis in neonatal rat cardiomyocytes
    Zhou, Xiang
    Lu, Xiang
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2013, 238 (08) : 898 - 902
  • [44] Sarpogrelate protects against high glucose-induced endothelial dysfunction and oxidative stress
    Sun, Yan-Ming
    Su, Ying
    Jin, Hong-Bo
    Li, Jia
    Bi, Sheng
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2011, 147 (03) : 383 - 387
  • [45] Melatonin Alleviates High Glucose-induced Oxidative Stress and Mitochondrial Dysfunction in Chondrocytes
    Mehrzadi, Saeed
    Hassani, Shokoufeh
    Hosseinzadeh, Azam
    CURRENT DRUG THERAPY, 2024, 19 (06) : 719 - 726
  • [46] Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells
    Liu, Xiaomin
    Zhao, Xiaowen
    Cheng, Rong
    Huang, Yusen
    BIOSCIENCE REPORTS, 2020, 40
  • [47] The protective role of resveratrol against high glucose-induced oxidative stress and apoptosis in HepG2 cells
    Tshivhase, Abegail Mukhethwa
    Matsha, Tandi
    Raghubeer, Shanel
    FOOD SCIENCE & NUTRITION, 2024, 12 (05): : 3574 - 3584
  • [48] CTRP3 inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells
    Zhang, Jian
    He, Jing
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2019, 47 (01) : 3758 - 3764
  • [49] High glucose-induced oxidative stress increases IL-8 production in human gingival epithelial cells
    Kashiwagi, Y.
    Takedachi, M.
    Mori, K.
    Kubota, M.
    Yamada, S.
    Kitamura, M.
    Murakami, S.
    ORAL DISEASES, 2016, 22 (06) : 578 - 584
  • [50] Polygonatum sibiricum polysaccharide inhibits high glucose-induced oxidative stress, inflammatory response, and apoptosis in RPE cells
    Wang, Wenjun
    Li, Shang
    Song, Meixia
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2022, 42 (02) : 189 - 196