An Efficient and Effective Preconditioner for the Discontinuous Galerkin Domain Decomposition Method of Surface Integral Equation

被引:1
|
作者
Xin, Xi-Min [1 ]
Gao, Hong-Wei [1 ]
Wang, Shu [2 ,3 ]
Peng, Zhen [4 ]
Sheng, Xin-Qing [1 ]
机构
[1] Beijing Inst Technol, Inst Appl Electromagnet, Beijing 100081, Peoples R China
[2] Univ New Mexico, Dept Elect & Comp Engn, Appl Electromagnet Grp, Albuquerque, NM 87131 USA
[3] NVIDIA Corp, Santa Clara, CA 95050 USA
[4] Univ Illinois, Elect & Comp Engn Dept, Urbana, IL 61801 USA
来源
基金
中国国家自然科学基金;
关键词
Discontinuous Galerkin (DG); domain decomposition method (DDM); multilevel fast multipole algorithm (MLFMA); Schwarz preconditioning; surface integral equation (SIE); FAST-MULTIPOLE ALGORITHM; ELECTROMAGNETIC SCATTERING; SOLVERS; SCHEME;
D O I
10.1109/LAWP.2023.3288535
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a new preconditioning technique based on a restricted additive Schwarz (RAS) approach to improve the efficiency of the discontinuous Galerkin surface integral equation method. The RAS preconditioning is implemented efficiently using an octree structure derived from the multilevel fast multipole algorithm and is constructed using near-field matrices associated with boxes at the finest level. Compared with existing domain decomposition preconditioning methods based on subdomain block matrices, the proposed RAS preconditioning significantly reduces computation time and memory requirements, while providing scalable convergence for iterative solutions. Numerical experiments are presented to demonstrate the performance of the proposed cost-effective preconditioning technique.
引用
收藏
页码:2367 / 2371
页数:5
相关论文
共 50 条
  • [31] Discontinuous Galerkin Time Domain Electric Field Integral Equation Method for Solving Non-conformal Structures
    Huang, Li
    Zhang, Hao-Xuan
    Zhou, Liang
    Yin, Wen-Yan
    Huang, Zheng
    Liao, Yi
    [J]. 2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 2445 - 2446
  • [32] On the Domain Decomposition Method Preconditioning of Surface Integral Equation Formulations Solved by GMRES
    Martin, Victor F.
    Araujo, Marta G.
    Landesa, Luis
    Obelleiro, Fernando
    Taboada, Jose M.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (02) : 2041 - 2046
  • [33] A Domain Decomposition Method Based on Simplified Volume-Surface Integral Equation
    Li, Xianjin
    Hu, Jun
    Chen, Yongpin
    Jiang, Ming
    Nie, Zaiping
    [J]. 2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 2399 - 2400
  • [34] A SCALABLE PRECONDITIONER FOR A PRIMAL DISCONTINUOUS PETROV-GALERKIN METHOD
    Barker, A. T.
    Dobrev, V.
    Gopalakrishnan, J.
    Kolev, T.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1187 - A1203
  • [35] Generalized Integral Method for Solving the Neutron Transport Equation with the Hybridized Discontinuous Galerkin Method
    Xiao, Wei
    Liu, Xiaojing
    Zu, Jianhua
    Chai, Xiang
    He, Hui
    Zhang, Tengfei
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2024,
  • [36] A Discontinuous Galerkin Integral Equation Method for Time-Harmonic Electromagnetic Problems
    Peng, Zhen
    Lee, Jin-Fa
    Lim, Kheng Hwee
    [J]. 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 258 - +
  • [37] A Discontinuous Galerkin Volume Integral Equation Method for Scattering From Inhomogeneous Objects
    Zhang, Li-Ming
    Sheng, Xin-Qing
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (12) : 5661 - 5667
  • [38] Local discontinuous Galerkin method for the fractional diffusion equation with integral fractional Laplacian
    Nie, Daxin
    Deng, Weihua
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 104 : 44 - 49
  • [39] A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR A DISCONTINUOUS GALERKIN METHOD: A NUMERICAL STUDY
    Park, Eun-Hee
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (04): : 419 - 431
  • [40] A discontinuous Galerkin method for the Rosenau equation
    Choo, S. M.
    Chung, S. K.
    Kim, K. I.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) : 783 - 799