Enzalutamide-induced signatures revealed by epigenetic plasticity using single-cell multi-omics sequencing in prostate cancer

被引:5
|
作者
Fan, Huihui [1 ,2 ]
Li, Jinze [3 ]
Manuel, Astrid M. [1 ]
Zhao, Zhongming [1 ,4 ,5 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Neurol, Houston, TX 77030 USA
[3] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth Environm & Occupat Hlth Sci, Houston, TX 77030 USA
[4] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Sch Publ Hlth, Houston, TX 77030 USA
[5] Univ Texas Hlth Grad Sch Biomed Sci, MD Anderson Canc Ctr, Houston, TX 77030 USA
来源
基金
美国国家卫生研究院;
关键词
ANDROGEN RECEPTOR; STEM-CELLS; INHIBITOR; METASTASIS; EXPRESSION; IDENTIFICATION; PERSPECTIVES; MODULATION; RESISTANCE; MIGRATION;
D O I
10.1016/j.omtn.2023.02.022
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Prostate cancer is morphologically and molecularly heteroge-neous, which poses obstacles for early diagnosis and treatment. Advancements in understanding the heterogeneity of prostate cancer will help navigate through these challenges and ulti-mately benefit patients. In this study, we integrated single -cell sequencing for transposase-accessible chromatin and whole transcriptome in prostate cancer cell lines, aiming to decode the epigenetic plasticity upon enzalutamide (ENZ) treatment. By comparing the cell populations representing early-treat-ment response or resistance to the initial tumor cells, we iden-tified seven signature gene sets; they present consistent trends of chromatin closing co-occurred with down-regulated genes during early response and chromatin opening with up-regu-lated genes upon maintaining drug resistance. In the molecular signatures, we found genes ZNF337, MAPK15, and ESRRG are favorable in progression-free prognosis during early response, while genes CCDC150, CCDC18, and POC1A marked poor prognosis underpinning the pre-existing drug resistance in The Cancer Genome Atlas prostate adenocarcinoma cohort. Ultimately, drug-target analyses nominated combinatory drug candidates to either enhance early-treatment response or potentially overcome ENZ resistance. Together, our integra-tive, single-cell multi-omics approach in pre-clinical models is effective in identifying informative signatures from complex molecular events, illustrating diverse drug responses in pros-tate cancer, and invoking novel combinatory drug strategies to inform clinical decision making.
引用
收藏
页码:648 / 661
页数:14
相关论文
共 50 条
  • [41] Functional inference of gene regulation using single-cell multi-omics
    Kartha, Vinay K.
    Duarte, Fabiana M.
    Hu, Yan
    Ma, Sai
    Chew, Jennifer G.
    Lareau, Caleb A.
    Earl, Andrew
    Burkett, Zach D.
    Kohlway, Andrew S.
    Lebofsky, Ronald
    Buenrostr, Jason D.
    CELL GENOMICS, 2022, 2 (09):
  • [42] Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
    Fan Guo
    Lin Li
    Jingyun Li
    Xinglong Wu
    Boqiang Hu
    Ping Zhu
    Lu Wen
    Fuchou Tang
    Cell Research, 2017, 27 : 967 - 988
  • [43] Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
    Guo, Fan
    Li, Lin
    Li, Jingyun
    Wu, Xinglong
    Hu, Boqiang
    Zhu, Ping
    Wen, Lu
    Tang, Fuchou
    CELL RESEARCH, 2017, 27 (08) : 967 - 988
  • [44] Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications
    Lynch, Mark
    Ramalingam, Naveen
    SINGLE MOLECULE AND SINGLE CELL SEQUENCING, 2019, 1129 : 19 - 26
  • [45] Arsenal of single-cell multi-omics methods expanded
    Tang, Lin
    NATURE METHODS, 2021, 18 (08) : 858 - 858
  • [46] How single-cell multi-omics builds relationships
    Marx, Vivien
    NATURE METHODS, 2022, 19 (02) : 142 - 146
  • [47] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [48] EpiDamID, a new single-cell multi-omics tool
    Dorothy Clyde
    Nature Reviews Genetics, 2022, 23 : 323 - 323
  • [49] EpiDamID, a new single-cell multi-omics tool
    不详
    NATURE REVIEWS GENETICS, 2022, 23 (6) : 323 - 323
  • [50] Methods and applications for single-cell and spatial multi-omics
    Vandereyken, Katy
    Sifrim, Alejandro
    Thienpont, Bernard
    Voet, Thierry
    NATURE REVIEWS GENETICS, 2023, 24 (08) : 494 - 515