Nonalcoholic fatty liver disease (NAFLD) detection and deep learning in a Chinese community-based population

被引:5
|
作者
Yang, Yang [1 ,2 ,3 ]
Liu, Jing [4 ]
Sun, Changxuan [1 ,2 ,3 ]
Shi, Yuwei [1 ,2 ,3 ]
Hsing, Julianna C. [5 ]
Kamya, Aya [6 ]
Keller, Cody Auston [6 ]
Antil, Neha [6 ]
Rubin, Daniel [6 ,7 ]
Wang, Hongxia [8 ]
Ying, Haochao [9 ]
Zhao, Xueyin [1 ,2 ,3 ]
Wu, Yi-Hsuan [10 ]
Nguyen, Mindie [11 ,12 ]
Lu, Ying [7 ,11 ,13 ]
Yang, Fei [1 ,2 ,3 ]
Huang, Pinton [14 ]
Hsing, Ann W. [10 ,11 ,13 ]
Wu, Jian [15 ,16 ]
Zhu, Shankuan [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Childrens Hosp, Chron Dis Res Inst, Sch Publ Hlth,Sch Med, 866 Yu Hang Tang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Natl Clin Res Ctr Child Hlth, Sch Publ Hlth, Sch Med, 866 Yu Hang Tang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[3] Zhejiang Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Hangzhou, Zhejiang, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, 866 Yu Hang Tang Rd, Hangzhou 310058, Peoples R China
[5] Stanford Univ, Ctr Policy Outcomes & Prevent, Sch Med, Stanford, CA USA
[6] Stanford Univ, Dept Radiol, Sch Med, Stanford, CA USA
[7] Stanford Univ, Dept Biomed Data Sci, Sch Med, Stanford, CA USA
[8] Zhejiang Univ, Affiliated Hosp 1, Dept Ultrasound, Sch Med, Hangzhou, Zhejiang, Peoples R China
[9] Zhejiang Univ, Sch Publ Hlth, Dept Big Data Hlth Sci, Hangzhou, Peoples R China
[10] Stanford Univ Sch Med, Stanford Prevent Res Ctr, Dept Med, 780 Welch Rd,CJ Huang Bldg,Suite 250D, Stanford, CA 94305 USA
[11] Stanford Univ, Dept Epidemiol & Populat Hlth, Sch Med, Stanford, CA 94305 USA
[12] Stanford Univ, Div Gastroenterol & Hepatol, Med Ctr, Stanford, CA USA
[13] Stanford Univ, Stanford Canc Inst, Sch Med, Stanford, CA 94305 USA
[14] Zhejiang Univ, Affiliated Hosp 2, Dept Ultrasound, Sch Med, Hangzhou, Zhejiang, Peoples R China
[15] Zhejiang Univ, Affiliated Hosp 2, Sch Publ Hlth, Sch Med, Hangzhou 310058, Peoples R China
[16] Zhejiang Univ, Inst Wenzhou, Hangzhou 310058, Peoples R China
关键词
Convolutional neural networks; Deep learning; Nonalcoholic fatty liver disease; Ultrasound imaging; Fatty liver indices; ULTRASOUND; DIAGNOSIS; STRATIFICATION; STEATOSIS;
D O I
10.1007/s00330-023-09515-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives We aimed to develop and validate a deep learning system (DLS) by using an auxiliary section that extracts and outputs specific ultrasound diagnostic features to improve the explainable, clinical relevant utility of using DLS for detecting NAFLD. Methods In a community-based study of 4144 participants with abdominal ultrasound scan in Hangzhou, China, we sampled 928 (617 [66.5%] females, mean age: 56 years +/- 13 [standard deviation]) participants (2 images per participant) to develop and validate DLS, a two-section neural network (2S-NNet). Radiologists' consensus diagnosis classified hepatic steatosis as none steatosis, mild, moderate, and severe. We also explored the NAFLD detection performance of six one-section neural network models and five fatty liver indices on our data set. We further evaluated the influence of participants' characteristics on the correctness of 2S-NNet by logistic regression. Results Area under the curve (AUROC) of 2S-NNet for hepatic steatosis was 0.90 for >= mild, 0.85 for >= moderate, and 0.93 for severe steatosis, and was 0.90 for NAFLD presence, 0.84 for moderate to severe NAFLD, and 0.93 for severe NAFLD. The AUROC of NAFLD severity was 0.88 for 2S-NNet, and 0.79-0.86 for one-section models. The AUROC of NAFLD presence was 0.90 for 2S-NNet, and 0.54-0.82 for fatty liver indices. Age, sex, body mass index, diabetes, fibrosis-4 index, android fat ratio, and skeletal muscle via dual-energy X-ray absorptiometry had no significant impact on the correctness of 2S-NNet (p > 0.05). Conclusions By using two-section design, 2S-NNet had improved the performance for detecting NAFLD with more explainable, clinical relevant utility than using one-section design.
引用
收藏
页码:5894 / 5906
页数:13
相关论文
共 50 条
  • [41] Protective effect of genistein on nonalcoholic fatty liver disease (NAFLD)
    Xin, Xin
    Chen, Cheng
    Hu, Yi-Yang
    Feng, Qin
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2019, 117
  • [42] Epidemiology and risk factors of nonalcoholic fatty liver disease (NAFLD)
    Ajay Duseja
    Naga Chalasani
    [J]. Hepatology International, 2013, 7 : 755 - 764
  • [43] THE NONALCOHOLIC FATTY LIVER DISEASE (NAFLD) CONUNDRUM: HOW TO DEFINE IT?
    Mato, J. M.
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 123 : 5 - 5
  • [44] GLOBAL BURDEN OF NONALCOHOLIC FATTY LIVER DISEASE (NAFLD) IN THE ELDERLY
    Paik, James M.
    Ghafouri, Ariana
    Shah, Dipam
    Al Shabeeb, Reem Q.
    Alqahtani, Saleh A.
    Younossi, Zobair M.
    [J]. GASTROENTEROLOGY, 2023, 164 (06) : S1297 - S1298
  • [45] The histological features of pediatric nonalcoholic fatty liver disease (NAFLD).
    Schwimmer, JB
    Behling, C
    Newbury, R
    McGreal, N
    Rauch, J
    Deutsch, R
    Lavine, JE
    [J]. HEPATOLOGY, 2002, 36 (04) : 412A - 412A
  • [46] Nonalcoholic fatty liver disease (NAFLD) among older adults
    Pitisuttithum, Panyavee
    Treeprasertsuk, Sombat
    [J]. PORTAL HYPERTENSION & CIRRHOSIS, 2022, 1 (03): : 184 - 191
  • [47] Burden of Nonalcoholic Fatty Liver Disease (NAFLD) in the United States
    Sanyal, Arun J.
    Estes, Chris
    Razavi, Homie
    [J]. HEPATOLOGY, 2016, 64 : 532A - 532A
  • [48] Pediatric nonalcoholic fatty liver disease (NAFLD): A "growing" problem?
    Roberts, Eve A.
    [J]. JOURNAL OF HEPATOLOGY, 2007, 46 (06) : 1133 - 1142
  • [49] Nonalcoholic fatty liver disease (NAFLD): Diagnosis, pitfalls, and staging
    Koch, Lisa K.
    Yeh, Matthew M.
    [J]. ANNALS OF DIAGNOSTIC PATHOLOGY, 2018, 37 : 83 - 90
  • [50] OT Texture Analysis in Nonalcoholic Fatty Liver Disease (NAFLD)
    Dichtel, Laura E.
    Tabari, Azadeh
    Mercaldo, Nathaniel D.
    Corey, Kathleen E.
    Husseini, Jad
    Osganian, Stephanie A.
    Chicote, Mark L.
    Rao, Elizabeth M.
    Miller, Karen K.
    Bredella, Miriam A.
    [J]. JOURNAL OF CLINICAL AND EXPERIMENTAL HEPATOLOGY, 2023, 13 (05) : 760 - 766