Data-driven scientific research based on public statistics: a bibliometric perspective

被引:2
|
作者
Velasco-Lopez, Jorge-Eusebio [1 ]
Carrasco, Ramon-Alberto [1 ]
Cobo, Manuel J. [2 ]
Fernandez-Aviles, Gema [3 ]
机构
[1] Univ Complutense Madrid, Fac Estudios Estadist, Avda Puerta Hierro s-n, Madrid 28040, Spain
[2] Univ Granada, Inst Andaluz Interuniv Ciencia Datos & Inteligenc, Periodista Daniel Saucedo Aranda s-n, Granada 18071, Spain
[3] Univ Castilla La Mancha, Fac Ciencias Juridicas & Sociales Toledo, San Pedro Martir s-n, Toledo 45071, Spain
来源
PROFESIONAL DE LA INFORMACION | 2023年 / 32卷 / 03期
关键词
Official statistics; Co-word analysis; Strategic diagram; Science mapping analysis; Bibliometric analysis; SciMAT; MORTALITY; SCIENCE; DISORDERS; DISEASE; ENGLAND; GROWTH; BRAIN; LEVEL; WALES; FIELD;
D O I
10.3145/epi.2023.may.14
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
Official statistics provide information on different areas of citizens' lives and are widely used in scientific research as a source of data due to their open data nature and quality assurance. In this context, a bibliometric analysis is carried out using all Scopus publications from 1960 to 2020 that use official statistics as data sources. Thus, 10,777 publications are analyzed using the SciMAT bibliometric analysis software, providing a complete conceptual analysis of the main research topics in the literature through the quantification of the main bibliometric performance indicators, identifying the most important authors, organizations, countries, sources, and intellectual structures corresponding to the main fields of research and bringing classification by subject area as an innovation to the methodology.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] DATA-DRIVEN SIMULATION OF CONTAGIONS IN PUBLIC VENUES
    Guarino, Stefano
    Torre, Davide
    Bernaschi, Massimo
    Celestini, Alessandro
    Cianfriglia, Marco
    Mastrostefano, Enrico
    Zastrow, Lena Rebecca
    [J]. PROCEEDINGS OF THE 2021 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'21), 2020,
  • [42] Mapping the scientific research on open data: A bibliometric review
    Zhang, Yun
    Hua, Weina
    Yuan, Shunbo
    [J]. LEARNED PUBLISHING, 2018, 31 (02) : 95 - 106
  • [43] Data-Driven Optimization of Public Transit Schedule
    Basak, Sanchita
    Sun, Fangzhou
    Sengupta, Saptarshi
    Dubey, Abhishek
    [J]. BIG DATA ANALYTICS (BDA 2019), 2019, 11932 : 265 - 284
  • [44] Data-driven Management of Dynamic Public Transport
    Horazdovsky, Patrik
    Novotny, Vojtech
    Svitek, Miroslav
    [J]. 2018 SMART CITY SYMPOSIUM PRAGUE (SCSP), 2018,
  • [45] Regulation of data-driven marketing and management theory: bibliometric analysis, systematic literature review and research agenda
    Xavier, Jorge
    Picoto, Winnie Ng
    [J]. INTERNATIONAL JOURNAL OF LAW AND MANAGEMENT, 2023, 65 (05) : 461 - 482
  • [46] Accelerating scientific discoveries through data-driven innovations
    Alexander, Francis J.
    Lin, Meifeng
    Qian, Xiaoning
    Yoon, Byung-Jun
    [J]. PATTERNS, 2023, 4 (11):
  • [47] Accelerating Data-Driven Discovery With Scientific Asset Management
    Schuler, Robert E.
    Kesselman, Carl
    Czajkowski, Karl
    [J]. PROCEEDINGS OF THE 2016 IEEE 12TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2016, : 31 - 40
  • [48] Scientific and ethical evaluation of projects in data-driven medicine
    Caliebe, Amke
    Scherag, Andre
    Strech, Daniel
    Mansmann, Ulrich
    [J]. BUNDESGESUNDHEITSBLATT-GESUNDHEITSFORSCHUNG-GESUNDHEITSSCHUTZ, 2019, 62 (06) : 765 - 772
  • [49] OM Research: From Problem-Driven to Data-Driven Research
    Simchi-Levi, David
    [J]. M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2014, 16 (01) : 2 - 10
  • [50] Research on data-driven multi-sensory design path based on Chinese gardens under the perspective of AI big data
    Xie, Na
    Xia, Zhongjun
    Zhou, Wenyu
    [J]. Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)