Model based clustering of multinomial count data

被引:0
|
作者
Papastamoulis, Panagiotis [1 ]
机构
[1] Athens Univ Econ & Business, Dept Stat, 76 Patiss Str, Athens 10434, Greece
关键词
Mixture model; Multinomial logistic regression; Count data; Clustering; CHAIN-MONTE-CARLO; LABEL SWITCHING PROBLEM; C PLUS PLUS; BAYESIAN-ANALYSIS; UNKNOWN NUMBER; MIXTURE-MODELS; VARIABLE SELECTION; FINITE MIXTURES; STANDARD ERRORS; EM ALGORITHM;
D O I
10.1007/s11634-023-00547-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of inferring an unknown number of clusters in multinomial count data, by estimating finite mixtures of multinomial distributions with or without covariates. Both Maximum Likelihood (ML) as well as Bayesian estimation are taken into account. Under a Maximum Likelihood approach, we provide an Expectation-Maximization (EM) algorithm which exploits a careful initialization procedure combined with a ridge-stabilized implementation of the Newton-Raphson method in the M-step. Under a Bayesian setup, a stochastic gradient Markov chain Monte Carlo (MCMC) algorithm embedded within a prior parallel tempering scheme is devised. The number of clusters is selected according to the Integrated Completed Likelihood criterion in the ML approach and estimating the number of non-empty components in overfitting mixture models in the Bayesian case. Our method is illustrated in simulated data and applied to two real datasets. The proposed methods are implemented in a contributed R package, available online.
引用
下载
收藏
页数:47
相关论文
共 50 条
  • [21] Multinomial mixture model with feature selection for text clustering
    Li, Minqiang
    Zhang, Liang
    KNOWLEDGE-BASED SYSTEMS, 2008, 21 (07) : 704 - 708
  • [22] A Bayesian zero-inflated Dirichlet-multinomial regression model for multivariate compositional count data
    Koslovsky, Matthew D. D.
    BIOMETRICS, 2023, 79 (04) : 3239 - 3251
  • [23] Inference and evaluation of the multinomial mixture model for text clustering
    Rigouste, Lois
    Cappe, Olivier
    Yvon, Francois
    INFORMATION PROCESSING & MANAGEMENT, 2007, 43 (05) : 1260 - 1280
  • [24] Efficient Computation of Log-likelihood Function in Clustering Overdispersed Count Data Using Multinomial Beta-Liouville Distribution
    Daghyani, Masoud
    Zamzami, Nuha
    Bouguila, Nizar
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 986 - 993
  • [25] Semi-parametric Models for Longitudinal Count, Binary and Multinomial Data
    Sutradhar, Brajendra C.
    ADVANCES AND CHALLENGES IN PARAMETRIC AND SEMI-PARAMETRIC ANALYSIS FOR CORRELATED DATA, 2016, 218 : 199 - 229
  • [26] Robust estimation and outlier detection for overdispersed multinomial models of count data
    Mebane, WR
    Sekhon, JS
    AMERICAN JOURNAL OF POLITICAL SCIENCE, 2004, 48 (02) : 392 - 411
  • [27] Modelling count data using the logratio-normal-multinomial distribution
    Comas-Cufi, M.
    Martin-Fernandez, J. A.
    Mateu-Figueras, G.
    Palarea-Albaladejo, J.
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2020, 44 (01) : 99 - 126
  • [28] Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data
    Tu, Wangshu
    Subedi, Sanjeena
    JOURNAL OF CLASSIFICATION, 2023, 40 (03) : 638 - 667
  • [29] Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data
    Wangshu Tu
    Sanjeena Subedi
    Journal of Classification, 2023, 40 : 638 - 667
  • [30] Model selection based on penalized f-divergences for multinomial data
    Alba-Fernandez, M. V.
    Jimenez-Gamero, M. D.
    Jimenez-Jimenez, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404