Existence of weak solutions for p(x)-Laplacian-like problem with p(x)-Laplacian operator under Neumann boundary condition

被引:11
|
作者
El Ouaarabi, Mohamed [1 ]
Allalou, Chakir [1 ]
Melliani, Said [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Tech Beni Mellal, Lab LMACS, BP 523, Beni Mellal 23000, Morocco
来源
关键词
Neumann boundary value problem; p(x)-Laplacian-like; p(x)-Laplacian operator; Topological degree theory; SPACES; MINIMIZERS;
D O I
10.1007/s40863-022-00321-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our purpose is to establish the existence of weak solutions to Neumann boundary value problem for equations involving the p(x)-Laplacian-like operator and the p(x)-Laplacian operator. The existence proof is based on the theory of the variable exponent Sobolev spaces and the topological degree theory. Our result extend and generalize several corresponding results from the existing literature.
引用
收藏
页码:1057 / 1075
页数:19
相关论文
共 50 条
  • [21] Existence results for a p(x)-Laplacian problem with nonlinear boundary condition
    Hammou, Mustapha Ait
    [J]. AFRIKA MATEMATIKA, 2022, 33 (04)
  • [22] Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators
    M. Manuela Rodrigues
    [J]. Mediterranean Journal of Mathematics, 2012, 9 : 211 - 223
  • [23] Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces
    Mohamed El Ouaarabi
    Chakir Allalou
    Said Melliani
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1337 - 1350
  • [24] Existence result for Neumann problems with p(x)-Laplacian-like operators in generalized Sobolev spaces
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1337 - 1350
  • [25] Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators
    Manuela Rodrigues, M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (01) : 211 - 223
  • [26] The Nehari manifold approach for p(x)-Laplacian problem with Neumann boundary condition
    Taghavi, A.
    Afrouzi, G. A.
    Ghorbani, H.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (39) : 1 - 14
  • [27] Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition
    M. B. Benboubker
    E. Nassouri
    S. Ouaro
    U. Traoré
    [J]. Advances in Operator Theory, 2020, 5 : 1480 - 1497
  • [28] Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition
    Benboubker, M. B.
    Nassouri, E.
    Ouaro, S.
    Traore, U.
    [J]. ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1480 - 1497
  • [29] Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian
    Fan, Xianling
    Ji, Chao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) : 248 - 260
  • [30] Weak Solutions for Double Phase Problem Driven by the (p(x), q(x))-Laplacian Operator Under Dirichlet Boundary Conditions
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19