The nexus of sustainable fisheries: A hybrid self-powered and self-sensing wave energy harvester

被引:3
|
作者
Liu, Weizhen [1 ]
Li, Yingjie [1 ]
Tang, Hongjie [3 ]
Zhang, Zutao [2 ]
Wu, Xiaoping [4 ]
Zhao, Jie [1 ]
Zeng, Lei [1 ]
Tang, Minfeng [4 ]
Hao, Daning [4 ]
机构
[1] Southwest Jiaotong Univ, Tangshan Inst, Tangshan 063008, Peoples R China
[2] Chengdu Technol Univ, Chengdu 611730, Peoples R China
[3] Southwest Jiaotong Univ, Sch Informat Sci & Tech, Chengdu 610031, Peoples R China
[4] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
关键词
Sustainable fisheries; Eccentric pendulum; Wave energy harvester; Wave monitoring; Triboelectric nanogenerator; TRIBOELECTRIC NANOGENERATOR;
D O I
10.1016/j.oceaneng.2024.116996
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Wave energy harvesters (WEHs) are an effective solution to the problem of powering sensors in marine fisheries. A future direction for WEHs is to achieve wave monitoring while meeting the power requirements of the sensors. This paper presents a hybrid self -powered and self -sensing wave energy harvester (HSS-WEH), which consists of three modules: an energy input module, a self -powered module, and a self -sensing module. In this study, an eccentric pendulum is used to capture low -frequency irregular wave energy. The proposed rectification enhancement mechanism (REM) converts the bidirectional rotation of the spindle into the unidirectional rotation of the magnet flywheel. In addition, a triboelectric nanogenerator based on rolling PTFE balls is used to convert wave information into electrical signals for wave monitoring. The optimization of the mass of the eccentric pendulum was achieved through a six -degree -of -freedom platform experiment. At 0.3 Hz, the electromagnetic generator power with REM is enhanced by 36.11 % to 7.84 mW than without REM. Furthermore, the self -sensing module achieves a high level of accuracy, reaching 98.62 % in identifying the risk level of the waves. Water tank experiments and energy consumption analysis of sensors confirm the practical applicability of HSS-WEH in sustainable fisheries.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [41] Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission
    Xi, Fengben
    Pang, Yaokun
    Liu, Guoxu
    Wang, Shuwei
    Li, Wei
    Zhang, Chi
    Wang, Zhong Lin
    NANO ENERGY, 2019, 61 : 1 - 9
  • [42] Hybrid Piezoelectric-Triboelectric Vibration Energy Harvester for Intelligent Bearing Self-Powered System
    Luo M.
    Xueliang Z.
    Zhaoqi Y.
    Heng W.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (03): : 173 - 182
  • [43] Self-powered semi-passive vibration damping system based on the self-sensing approach
    Shen, Hui
    Ji, Hongli
    Qiu, Jinhao
    Yang, Qian
    Yu, Mengge
    Bian, Yixiang
    Ding, Xiaoliang
    JOURNAL OF SOUND AND VIBRATION, 2021, 512
  • [44] Experimental Study of Self-powered and Self-sensing System for the Rail Corrugation In-situ Inspection
    Sun, Yuhua
    Wang, Ping
    Xu, Jingmang
    Wang, Yuan
    Wang, Peigen
    Gao, Mingyuan
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (18): : 107 - 117
  • [45] Self-powered semi-passive vibration damping system based on self-sensing approach
    Shen, Hui
    Zhang, Fengsheng
    Ji, Hongli
    Qiu, Jinhao
    Bian, Yixiang
    SEVENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2016, 9903
  • [46] Self-powered semi-passive vibration damping system based on the self-sensing approach
    Shen, Hui
    Ji, Hongli
    Qiu, Jinhao
    Yang, Qian
    Yu, Mengge
    Bian, Yixiang
    Ding, Xiaoliang
    Journal of Sound and Vibration, 2021, 512
  • [47] Research on a self-powered rolling bearing fault diagnosis method with a piezoelectric generator for self-sensing
    Shi, Runye
    Yan, Zhengshun
    Fang, Shitong
    Qiao, Zijian
    Xiao, Shiyi
    Lei, Jiaoyu
    Wang, Zhouzhou
    Xu, Bin
    Lai, Zhihui
    APPLIED ENERGY, 2024, 376
  • [48] A self-powered and self-monitoring ultra-low frequency wave energy harvester for smart ocean ranches
    Peng, Yang
    Tang, Hongjie
    Pan, Hongye
    Zhang, Zutao
    Luo, Dabing
    Tang, Minfeng
    Kong, Weihua
    Li, Yingjie
    Liu, Genshuo
    Hu, Yongli
    ISCIENCE, 2024, 27 (09)
  • [49] Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester with a Low Startup Wind Speed in Urban Self-Powered Sensing
    Li, Gang
    Cui, Juan
    Liu, Tingshan
    Zheng, Yongqiu
    Hao, Congcong
    Hao, Xiaojian
    Xue, Chenyang
    MICROMACHINES, 2023, 14 (02)
  • [50] Hybrid Triboelectric-Electromagnetic-Piezoelectric Wind Energy Harvester toward Wide-Scale IoT Self-Powered Sensing
    Tian, Shuo
    Lai, Lixiang
    Xin, Jianpeng
    Qu, Zongtao
    Li, Bin
    Dai, Yejing
    SMALL, 2024, 20 (20)