Robust functional logistic regression

被引:0
|
作者
Akturk, Berkay [1 ]
Beyaztas, Ufuk [2 ]
Shang, Han Lin [3 ]
Mandal, Abhijit [4 ]
机构
[1] Marmara Univ, Grad Sch Nat & Appl Sci, TR-34722 Kadikoy Istanbul, Turkiye
[2] Marmara Univ, Dept Stat, TR-34722 Kadikoy Istanbul, Turkiye
[3] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Level 7,4 Eastern Rd, Sydney, NSW 2109, Australia
[4] Univ Texas El Paso, Dept Math Sci, El Paso, TX USA
关键词
Bianco and Yohai estimator; Functional data; Functional principal component analysis; Logistic regression; PRINCIPAL COMPONENTS; DEPTH; CLASSIFICATION; GENE;
D O I
10.1007/s11634-023-00577-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Functional logistic regression is a popular model to capture a linear relationship between binary response and functional predictor variables. However, many methods used for parameter estimation in functional logistic regression are sensitive to outliers, which may lead to inaccurate parameter estimates and inferior classification accuracy. We propose a robust estimation procedure for functional logistic regression, in which the observations of the functional predictor are projected onto a set of finite-dimensional subspaces via robust functional principal component analysis. This dimension-reduction step reduces the outlying effects in the functional predictor. The logistic regression coefficient is estimated using an M-type estimator based on binary response and robust principal component scores. In doing so, we provide robust estimates by minimizing the effects of outliers in the binary response and functional predictor variables. Via a series of Monte-Carlo simulations and using hand radiograph data, we examine the parameter estimation and classification accuracy for the response variable. We find that the robust procedure outperforms some existing robust and non-robust methods when outliers are present, while producing competitive results when outliers are absent. In addition, the proposed method is computationally more efficient than some existing robust alternatives.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    TEST, 2022, 31 : 563 - 594
  • [22] Doubly robust logistic regression for image classification
    Song, Zihao
    Wang, Lei
    Xu, Xiangjian
    Zhao, Weihua
    APPLIED MATHEMATICAL MODELLING, 2023, 123 : 430 - 446
  • [23] Robust logistic regression with shift parameter estimation
    Shin, Bokyoung
    Lee, Seokho
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2625 - 2641
  • [24] Outliers and Robust Logistic Regression in Health Sciences
    Cutanda Henriquez, Francisco
    REVISTA ESPANOLA DE SALUD PUBLICA, 2008, 82 (06): : 617 - 625
  • [25] Robust Multinomial Logistic Regression Based on RPCA
    Yin, Ming
    Zeng, Deyu
    Gao, Junbin
    Wu, Zongze
    Xie, Shengli
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1144 - 1154
  • [26] Repeated measures in functional logistic regression
    Urbano-Leon, Cristhian Leonardo
    Aguilera, Ana Maria
    Escabias, Manuel
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 66 - 77
  • [27] Sparse logistic regression on functional data
    Xu, Yunnan
    Du, Pang
    Robertson, John
    Senger, Ryan
    STATISTICS AND ITS INTERFACE, 2022, 15 (02) : 171 - 179
  • [28] A robust scalar-on-function logistic regression for classification
    Mutis, Muge
    Beyaztas, Ufuk
    Simsek, Gulhayat Golbasi
    Shang, Han Lin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8538 - 8554
  • [29] Robust penalized logistic regression with truncated loss functions
    Park, Seo Young
    Liu, Yufeng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (02): : 300 - 323
  • [30] Unsupervised Domain Adaptation with Robust Deep Logistic Regression
    Wu, Guangbin
    Chen, Weishan
    Zuo, Wangmeng
    Zhang, David
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2017), 2018, 10749 : 199 - 211