FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing

被引:1
|
作者
Lv, Yankai [1 ,2 ]
Ding, Haiyan [1 ,2 ]
Wu, Hao [1 ,2 ]
Zhao, Yiji [3 ]
Zhang, Lei [4 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
[2] Yunnan Univ, Key Lab Intelligent Syst & Comp Yunnan Prov, Kunming 650091, Peoples R China
[3] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[4] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 23期
基金
中国国家自然科学基金;
关键词
federated learning; non-IID data; regularization; data sharing; machine learning;
D O I
10.3390/app132312962
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Federated learning (FL) is an emerging decentralized machine learning framework enabling private global model training by collaboratively leveraging local client data without transferring it centrally. Unlike traditional distributed optimization, FL trains the model at the local client and then aggregates it at the server. While this approach reduces communication costs, the local datasets of different clients are non-Independent and Identically Distributed (non-IID), which may make the local model inconsistent. The present study suggests a FL algorithm that leverages regularization and data sharing (FedRDS). The local loss function is adapted by introducing a regularization term in each round of training so that the local model will gradually move closer to the global model. However, when the client data distribution gap becomes large, adding regularization items will increase the degree of client drift. Based on this, we used a data-sharing method in which a portion of server data is taken out as a shared dataset during the initialization. We then evenly distributed these data to each client to mitigate the problem of client drift by reducing the difference in client data distribution. Analysis of experimental outcomes indicates that FedRDS surpasses some known FL methods in various image classification tasks, enhancing both communication efficacy and accuracy.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A General Federated Learning Scheme with Blockchain on Non-IID Data
    Wu, Hao
    Zhao, Shengnan
    Zhao, Chuan
    Jing, Shan
    INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2023, PT I, 2024, 14526 : 126 - 140
  • [32] FedProc: Prototypical contrastive federated learning on non-IID data
    Mu, Xutong
    Shen, Yulong
    Cheng, Ke
    Geng, Xueli
    Fu, Jiaxuan
    Zhang, Tao
    Zhang, Zhiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 93 - 104
  • [33] Data independent warmup scheme for non-IID federated learning
    Arafeh, Mohamad
    Ould-Slimane, Hakima
    Otrok, Hadi
    Mourad, Azzam
    Talhi, Chamseddine
    Damiani, Ernesto
    INFORMATION SCIENCES, 2023, 623 : 342 - 360
  • [34] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [35] FedCML: Federated Clustering Mutual Learning with non-IID Data
    Chen, Zekai
    Wang, Fuyi
    Yu, Shengxing
    Liu, Ximeng
    Zheng, Zhiwei
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 623 - 636
  • [36] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [37] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [38] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [39] Feature Matching Data Synthesis for Non-IID Federated Learning
    Li, Zijian
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9352 - 9367
  • [40] FedKT: Federated learning with knowledge transfer for non-IID data
    Mao, Wenjie
    Yu, Bin
    Zhang, Chen
    Qin, A. K.
    Xie, Yu
    PATTERN RECOGNITION, 2025, 159