GCNInformer: A combined deep learning model based on GCN and Informer for wind power forecasting

被引:2
|
作者
Wang, Hai-Kun [1 ,2 ]
Li, Danyang [1 ]
Chen, Feng [1 ]
Du, Jiahui [1 ]
Song, Ke [1 ]
机构
[1] Chongqing Univ Technol, Sch Artificial Intelligence, Pu Fu Rd 459, Chongqing 401135, Peoples R China
[2] Chongqing Ind Big Data Innovat Ctr Co Ltd, Chongqing, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
graph convolutional network (GCN); time-series forecasting; Informer; wind power prediction; a hybrid method; SINGULAR SPECTRUM ANALYSIS; SPEED PREDICTION; DECOMPOSITION; NETWORKS;
D O I
10.1002/ese3.1562
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind power energy is green, clean, and renewable, which is random and volatile. The integration of unstable wind energy severely threatens the security and constant operation of the power system. The need to enhance the reliability of wind power grid integration, mitigate the impact of wind power uncertainty, and develop a robust prediction model has become a pressing issue. However, only some people have considered the correlations among the power of multiple adjacent wind turbine arrays. In this paper, we propose GCNInformer to construct these relationships. Furthermore, we analyze the relationships among multiple features of individual wind turbines. GCNInformer is composed of two main components. The first component employs a graph convolutional network (GCN) to establish relationships among multiple wind turbine arrays, enhancing the correlation of the data. The second part employs Informer to extract the time information from the data and predict long-term sequences. For training and testing, GCNInformer utilizes two data sets: Data_CQ and Data_DL. The evaluation of the model's performance is conducted using various metrics such as mean absolute percentage error, mean absolute error, root mean square error, and mean square error. Numerous experimental findings have validated the effectiveness of the GCNInformer. GCNInformer is designed to enhance the accuracy and reliability of wind power forecasting. Graph convolutional network is utilized to capture correlations among the power of multiple adjacent wind turbine arrays, while the Informer module is used for long-term sequence prediction. Numerous experimental findings have validated the effectiveness of the model.image
引用
收藏
页码:3836 / 3854
页数:19
相关论文
共 50 条
  • [21] Exploiting Deep Learning for Wind Power Forecasting Based on Big Data Analytics
    Mujeeb, Sana
    Alghamdi, Turki Ali
    Ullah, Sameeh
    Fatima, Aisha
    Javaid, Nadeem
    Saba, Tanzila
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [22] Developing a wind power forecasting system based on deep learning with attention mechanism
    Tian, Chaonan
    Niu, Tong
    Wei, Wei
    ENERGY, 2022, 257
  • [23] Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning
    Han, Li
    Qiao, Yan
    Li, Mengjie
    Shi, Liping
    ENERGIES, 2020, 13 (23)
  • [24] Offshore wind power forecasting based on WPD and optimised deep learning methods
    Hanifi, Shahram
    Zare-Behtash, Hossein
    Cammarano, Andrea
    Lotfian, Saeid
    RENEWABLE ENERGY, 2023, 218
  • [25] FTLNet: federated deep learning model for multi-horizon wind power forecasting
    Majad Mansoor
    Gong Tao
    Adeel Feroz Mirza
    Balal Yousaf
    Muhammad Irfan
    Wei Chen
    Discover Internet of Things, 5 (1):
  • [26] Wind Power Forecasting with Machine Learning: Single and combined methods
    Rosa J.
    Pestana R.
    Leandro C.
    Geraldes C.
    Esteves J.
    Carvalho D.
    Renewable Energy and Power Quality Journal, 2022, 20 : 673 - 678
  • [27] Multi-modal multi-step wind power forecasting based on stacking deep learning model
    Xing, Zhikai
    He, Yigang
    RENEWABLE ENERGY, 2023, 215
  • [28] Wind power short-term forecasting based on meteorological feature exploring and improved deep learning model
    Yang J.
    Luo L.
    Yang T.
    Peng L.
    Tian F.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2023, 43 (03): : 110 - 116
  • [29] Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting
    Lin, Wen-Hui
    Wang, Ping
    Chao, Kuo-Ming
    Lin, Hsiao-Chung
    Yang, Zong-Yu
    Lai, Yu-Huang
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [30] Harmonics Forecasting of Wind and Solar Hybrid Model Based on Deep Machine Learning
    Al Hadi, Fawaz M.
    Aly, Hamed H.
    Little, Timothy
    IEEE ACCESS, 2023, 11 : 100438 - 100457