Applications of optimal transport methods in the least gradient problem

被引:0
|
作者
Gorny, Wojciech [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgernstern Pl 1, A-1090 Vienna, Austria
[2] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
MINIMIZERS; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the consequences of the equivalence between the least gra-dient problem and a boundary-to-boundary optimal transport problem in two di-mensions. We extend the relationship between the two problems to their respec-tive dual problems, as well as prove several regularity and stability results for the least gradient problem using optimal transport techniques.
引用
收藏
页码:1817 / 1851
页数:35
相关论文
共 50 条
  • [31] GRADIENT METHODS FOR SOLVING STOKES PROBLEM
    Golichev, I. I.
    Sharipov, T. R.
    Luchnikova, N. I.
    [J]. UFA MATHEMATICAL JOURNAL, 2016, 8 (02): : 22 - 38
  • [32] Optimal transport methods in economics
    Dizdar, Deniz
    [J]. JOURNAL OF ECONOMICS, 2018, 125 (03) : 309 - 312
  • [33] FIRST-ORDER SYSTEM LEAST-SQUARES METHODS FOR AN OPTIMAL CONTROL PROBLEM BY THE STOKES FLOW
    Ryu, Soorok
    Lee, Hyung-Chun
    Kim, Sang Dong
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1524 - 1545
  • [34] Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
    Bai ZhaoJun
    Li RenCang
    Lin WenWei
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1443 - 1460
  • [35] Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
    ZhaoJun Bai
    RenCang Li
    WenWei Lin
    [J]. Science China Mathematics, 2016, 59 : 1443 - 1460
  • [36] Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
    BAI ZhaoJun
    LI RenCang
    LIN WenWei
    [J]. Science China Mathematics, 2016, 59 (08) : 1443 - 1460
  • [37] The Euler-Lagrange equation for the Anisotropic least gradient problem
    Mazon, Jose M.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 452 - 472
  • [38] Planar least gradient problem: existence, regularity and anisotropic case
    Wojciech Górny
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [39] The planar least gradient problem in convex domains: the discontinuous case
    Piotr Rybka
    Ahmad Sabra
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [40] Least gradient problem with Dirichlet condition imposed on a part of the boundary
    Gorny, Wojciech
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)