Applications of optimal transport methods in the least gradient problem

被引:0
|
作者
Gorny, Wojciech [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgernstern Pl 1, A-1090 Vienna, Austria
[2] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
MINIMIZERS; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the consequences of the equivalence between the least gra-dient problem and a boundary-to-boundary optimal transport problem in two di-mensions. We extend the relationship between the two problems to their respec-tive dual problems, as well as prove several regularity and stability results for the least gradient problem using optimal transport techniques.
引用
收藏
页码:1817 / 1851
页数:35
相关论文
共 50 条
  • [1] OPTIMAL TRANSPORT APPROACH TO SOBOLEV REGULARITY OF SOLUTIONS TO THE WEIGHTED LEAST GRADIENT PROBLEM
    Dweik, Samer
    Gorny, Wojciech
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 1916 - 1948
  • [2] LEAST GRADIENT PROBLEM ON ANNULI
    Dweik, Samer
    Gorny, Wojciech
    [J]. ANALYSIS & PDE, 2022, 15 (03): : 699 - 725
  • [3] Gradient methods in an optimal control problem for a nonlinear elliptic system
    Serovaiskii, SY
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (05) : 1016 - 1027
  • [4] THE CONSTRAINED LEAST GRADIENT PROBLEM IN RN
    STERNBERG, P
    WILLIAMS, G
    ZIEMER, WP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (01) : 403 - 432
  • [5] On Partial Optimal Transport: Revising the Infeasibility of Sinkhorn and Efficient Gradient Methods
    Anh Duc Nguyen
    Tuan Dung Nguyen
    Quang Minh Nguyen
    Nguyen, Hoang H.
    Nguyen, Lam M.
    Toh, Kim-Chuan
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8090 - 8098
  • [6] An optimization problem with volume constraint with applications to optimal mass transport
    da Silva, Joao Vitor
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (10) : 5870 - 5900
  • [7] A survey of some recent applications of optimal transport methods to econometrics
    Galichon, Alfred
    [J]. ECONOMETRICS JOURNAL, 2017, 20 (02): : C1 - C11
  • [8] Special cases of the planar least gradient problem
    Gorny, Wojciech
    Rybka, Piotr
    Sabra, Ahmad
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 : 66 - 95
  • [9] (Non)uniqueness of minimizers in the least gradient problem
    Gorny, Wojciech
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 913 - 938
  • [10] APPLICATIONS OF LEAST SQUARES METHODS
    OPFELL, JB
    [J]. INDUSTRIAL AND ENGINEERING CHEMISTRY, 1959, 51 (02): : 226 - 226