On the chromatic number of (P5, dart)-free graphs

被引:0
|
作者
Xu, Weilun [1 ]
Zhang, Xia [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
P-5-free graphs; chromatic number; chi-boundedness;
D O I
10.1142/S1793830922500902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G, omega(G), chi(G) represent the clique number and the chromatic number of G, respectively. A hereditary family G of graphs is called chi-bounded with chi-binding function f if chi(G) <= f (omega(G)) for all G is an element of G. A result of Schiermeyer shows that the class of (P-5, dart)-free graphs has a chi-binding function f(omega) = omega(2) [L. Esperet, L. Lemoine, F. Maffray and G. Morel, The chromatic number of (P-5, K-4)-free graphs, Discrete Math. 313 (2013) 743-754]. In this paper, we prove that the class of (P-5, dart)-free graphs has a chi-binding function f(omega) = 3/4 omega(2). For the class of (P-5, C-5, dart)-free graphs, we give a chi-binding function f(omega) = ((omega+1)(2)).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] STABILITY NUMBER IN SUBCLASSES OF P5-FREE GRAPHS
    Zverovich I E
    Zverovich O I
    Applied Mathematics:A Journal of Chinese Universities, 2004, (02) : 125 - 132
  • [42] Stability number in subclasses of P5-free graphs
    Zverovich I.E.
    Zverovich O.I.
    Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (2) : 125 - 132
  • [43] Infinite Families of k-Vertex-Critical (P5,C5)-Free Graphs
    Cameron, Ben
    Hoang, Chinh
    GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [44] Coloring (P5,gem) $({P}_{5},\text{gem})$-free graphs with Δ -1 ${\rm{\Delta }}-1$ colors
    Cranston, Daniel W.
    Lafayette, Hudson
    Rabern, Landon
    JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 633 - 642
  • [45] On minimal imperfect graphs without induced P5
    Barré, V
    Fouquet, JL
    DISCRETE APPLIED MATHEMATICS, 1999, 94 (1-3) : 9 - 33
  • [46] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2017, 37 : 481 - 494
  • [47] Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time
    Broersma, Hajo
    Golovach, Petr A.
    Paulusma, Daniel
    Song, Jian
    THEORETICAL COMPUTER SCIENCE, 2012, 423 : 1 - 10
  • [48] On the chromatic number of 2K2-free graphs
    Brause, Christoph
    Randerath, Bert
    Schiermeyer, Ingo
    Vumar, Elkin
    DISCRETE APPLIED MATHEMATICS, 2019, 253 : 14 - 24
  • [49] The fractional chromatic number of triangle-free subcubic graphs
    Ferguson, David G.
    Kaiser, Tomas
    Kral, Daniel
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 184 - 220
  • [50] STAR CHROMATIC NUMBER OF TRIANGLE-FREE PLANAR GRAPHS
    GAO, GG
    APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 75 - 78