Developing and validating a natural language processing algorithm to extract preoperative cannabis use status documentation from unstructured narrative clinical notes

被引:3
|
作者
Sajdeya, Ruba [1 ,2 ,7 ]
Mardini, Mamoun T. [3 ]
Tighe, Patrick J. [4 ]
Ison, Ronald L. [4 ]
Bai, Chen [3 ]
Jugl, Sebastian [5 ]
Hanzhi, Gao [6 ]
Zandbiglari, Kimia [5 ]
Adiba, Farzana, I [5 ]
Winterstein, Almut G. [5 ]
Pearson, Thomas A. [1 ,2 ]
Cook, Robert L. [1 ,2 ]
Rouhizadeh, Masoud [2 ,5 ]
机构
[1] Univ Florida, Coll Publ Hlth & Hlth Profess, Dept Epidemiol, Gainesville, FL USA
[2] Univ Florida, Coll Med, Gainesville, FL USA
[3] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[4] Univ Florida, Coll Med, Dept Anesthesiol, Gainesville, FL USA
[5] Univ Florida, Ctr Drug Evaluat & Safety CoDES, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[6] Univ Florida, Dept Biostat, Gainesville, FL USA
[7] Univ Florida, Emerging Pathogens Inst, Coll Publ Hlth & Hlth Profess, Coll Med, 2055 Mowry Rd,POB 100009, Gainesville, FL 32610 USA
关键词
cannabis; perioperative outcomes; natural language processing; NLP; substance use; social determinants of health; HEALTH; IMPACT; CARE;
D O I
10.1093/jamia/ocad080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective This study aimed to develop a natural language processing algorithm (NLP) using machine learning (ML) techniques to identify and classify documentation of preoperative cannabis use status. Materials and Methods We developed and applied a keyword search strategy to identify documentation of preoperative cannabis use status in clinical documentation within 60 days of surgery. We manually reviewed matching notes to classify each documentation into 8 different categories based on context, time, and certainty of cannabis use documentation. We applied 2 conventional ML and 3 deep learning models against manual annotation. We externally validated our model using the MIMIC-III dataset. Results The tested classifiers achieved classification results close to human performance with up to 93% and 94% precision and 95% recall of preoperative cannabis use status documentation. External validation showed consistent results with up to 94% precision and recall. Discussion Our NLP model successfully replicated human annotation of preoperative cannabis use documentation, providing a baseline framework for identifying and classifying documentation of cannabis use. We add to NLP methods applied in healthcare for clinical concept extraction and classification, mainly concerning social determinants of health and substance use. Our systematically developed lexicon provides a comprehensive knowledge-based resource covering a wide range of cannabis-related concepts for future NLP applications. Conclusion We demonstrated that documentation of preoperative cannabis use status could be accurately identified using an NLP algorithm. This approach can be employed to identify comparison groups based on cannabis exposure for growing research efforts aiming to guide cannabis-related clinical practices and policies.
引用
下载
收藏
页码:1418 / 1428
页数:11
相关论文
共 50 条
  • [41] A natural language processing algorithm to extract characteristics of subdural hematoma from head CT reports
    Pruitt, Peter
    Naidech, Andrew
    Van Ornam, Jonathan
    Borczuk, Pierre
    Thompson, William
    EMERGENCY RADIOLOGY, 2019, 26 (03) : 301 - 306
  • [42] A natural language processing algorithm to extract characteristics of subdural hematoma from head CT reports
    Peter Pruitt
    Andrew Naidech
    Jonathan Van Ornam
    Pierre Borczuk
    William Thompson
    Emergency Radiology, 2019, 26 : 301 - 306
  • [43] Validation of a Natural Language Processing Algorithm to Extract Nodule Characteristics from Dictated Radiology Transcripts
    Gould, M. K.
    Liu, A. L.
    Zheng, C.
    Lee, J. S.
    Altman, D. E.
    Huang, B.
    Creekmur, B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [44] Deep Natural Language Processing to Identify Symptom Documentation in Clinical Notes for Patients With Heart Failure Undergoing Cardiac Resynchronization Therapy
    Leiter, Richard E.
    Santus, Enrico
    Jin, Zhijing
    Lee, Katherine C.
    Yusufov, Miryam
    Chien, Isabel
    Ramaswamy, Ashwin
    Moseley, Edward T.
    Qian, Yujie
    Schrag, Deborah
    Lindvall, Charlotta
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2020, 60 (05) : 948 - +
  • [45] UNLOCKING CLINICAL-DATA FROM NARRATIVE REPORTS - A STUDY OF NATURAL-LANGUAGE PROCESSING
    HRIPCSAK, G
    FRIEDMAN, C
    ALDERSON, PO
    DUMOUCHEL, W
    JOHNSON, SB
    CLAYTON, PD
    ANNALS OF INTERNAL MEDICINE, 1995, 122 (09) : 681 - 688
  • [46] Identification of staging for bladder cancer from narrative clinical documents using natural language processing
    He, Jinghua
    Cary, Clint
    Roberts, Anna
    Eckert, George
    Ouyang, Fangqian
    Haggstrom, David
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 267 - 268
  • [47] Identification of pancreatic cancer risk factors from clinical notes using natural language processing
    Sarwal, Dhruv
    Wang, Liwei
    Gandhi, Sonal
    Pour, Elham Sagheb Hossein
    Janssens, Laurens P.
    Delgado, Adriana M.
    Doering, Karen A.
    Mishra, Anup Kumar
    Greenwood, Jason D.
    Liu, Hongfang
    Majumder, Shounak
    PANCREATOLOGY, 2024, 24 (04) : 572 - 578
  • [48] Discovering Peripheral Arterial Disease Cases from Clinical Notes Using Natural Language Processing
    Afzal, Naveed
    Arruda-Olson, Adelaide M.
    Sohn, Sunghwan
    Lewis, Bradley
    Scott, Christopher
    Liu, Hongfang
    Kullo, Iftikhar
    VASCULAR MEDICINE, 2016, 21 (03) : 299 - 300
  • [49] Using natural language processing to provide personalized learning opportunities from trainee clinical notes
    Denny, Joshua C.
    Spickard, Anderson
    Speltz, Peter J., III
    Porier, Renee
    Rosenstiel, Donna E.
    Powers, James S.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 56 : 292 - 299
  • [50] Severity score extraction from clinical notes using natural language processing: Applications to dermatology
    Kumar, Vikas
    Rasouliyan, Lawrence
    Althoff, Amanda G.
    Chang, Stella
    Long, Stacey
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 125 - 125