Optimization of channel and rib dimension in serpentine flow field for vanadium redox flow battery

被引:1
|
作者
Kumar, Sanjay [1 ,2 ]
Agarwal, Varsha [2 ]
Barnwal, Vivek Kumar [2 ]
Sahu, Shubham [2 ]
Singh, Arvind [3 ]
机构
[1] Marwadi Univ, Fac Technol, Dept Chem Engn, Rajkot, Gujarat, India
[2] BIT Sindri, Dept Chem Engn, Dhanbad, Bihar, India
[3] Rajiv Gandhi Inst Petr Technol, Dept Chem & Biochem Engn, Jais, India
关键词
CFD; energy storage; flow analysis; vanadium redox flow battery; STORAGE-SYSTEM; PRESSURE-DROP; PERFORMANCE; SIMULATION; ELECTRODE; DESIGN;
D O I
10.1002/est2.349
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In redox flow battery, uniform electrolyte circulation is essential in the electrochemical reaction zone to achieve high current density. Flow field helps with the uniform distribution of electrolytes in reaction zone. In this article, the effect of different dimension of flow channels in a serpentine flow field on hydrodynamic aspects was studied using computational fluid dynamics (CFD) simulation. Cells with active area of 927 cm(2) having various combinations of flow channels width (1, 2, and 3 mm) and rib width (1, 2, and 3 mm) were employed for optimization of uniform electrolyte distribution in the reaction zone to achieve high power density. The electrode intrusion into flow channels were of 0.5, 1, and 1.5 mm and an electrode of 2.5 mm thickness were used to observe the pressure drop and electrolyte circulation effects for simulation studies. Those simulation results showed that with an increase in channel dimension, electrolyte circulation increases along with pressure drop, and with an increase in intrusion depth pressure drop also increases, therefore overall electrochemical performances will increase. This study will assist in the stack level design of the vanadium redox flow battery.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Review of vanadium redox flow battery technology
    Qu D.-W.
    Yang F.
    Fan L.-Y.
    Feng X.-Y.
    Ma J.-Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (01): : 1 - 24
  • [42] THE VANADIUM REDOX FLOW BATTERY: AN ASYMPTOTIC PERSPECTIVE
    Vynnycky, M.
    Assuncao, M.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (04) : 1147 - 1172
  • [43] A transient model of vanadium redox flow battery
    Ozgoli, Hassan Ali
    Elyasi, Saeed
    MECHANICS & INDUSTRY, 2016, 17 (04) : 406 - +
  • [44] Evolution of Vanadium Redox Flow Battery in Electrode
    Hossain, Md Hasnat
    Abdullah, Norulsamani
    Tan, Kim Han
    Saidur, R.
    Radzi, Mohd Amran Mohd
    Shafie, Suhaidi
    CHEMICAL RECORD, 2024, 24 (01):
  • [45] The Electrolyte Monitoring of a Vanadium Redox Flow Battery
    Al-Fetlawi, H.
    ENERGY TECHNOLOGY/BATTERY-JOINT SESSION (GENERAL) - 224TH ECS MEETING, 2014, 58 (36): : 33 - 48
  • [46] A multilayered membrane for vanadium redox flow battery
    Jia, Chuankun
    Liu, Jianguo
    Yan, Chuanwei
    JOURNAL OF POWER SOURCES, 2012, 203 : 190 - 194
  • [47] Economics of vanadium redox flow battery membranes
    Minke, Christine
    Turek, Thomas
    JOURNAL OF POWER SOURCES, 2015, 286 : 247 - 257
  • [48] Comparative Study of Kilowatt-Scale Vanadium Redox Flow Battery Stacks Designed with Serpentine Flow Fields and Split Manifolds
    Gundlapalli, Ravendra
    Jayanti, Sreenivas
    BATTERIES-BASEL, 2021, 7 (02):
  • [49] Numerical studies on rib & channel dimension of flow-field on PEMFC performance
    Shimpalee, S.
    Van Zee, J. W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (07) : 842 - 856
  • [50] Understanding and enhancing the under-rib convection for flow-field structured vanadium redox flow batteries
    Wang, Zimu
    Su, Ruihang
    Jiang, Haoran
    Zhao, Tianshou
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 230