Optimal Planning of Electric Vehicle Charging Stations Considering Traffic Load for Smart Cities

被引:5
|
作者
Campana, Miguel [1 ,3 ]
Inga, Esteban [1 ,2 ]
机构
[1] Univ Politecn Salesiana, Dept Master Elect, Quito 170525, Ecuador
[2] Univ Politecn Salesiana, Smart Grid Res Grp, Quito 170525, Ecuador
[3] Postgrad Dept, Giron Campus,Ave 12 Octubre N 23-52, Quito 170525, Ecuador
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2023年 / 14卷 / 04期
关键词
EV charging stations; georeferenced systems; vehicle flow paths; optimization; transport problem; MODEL; ASSIGNMENT;
D O I
10.3390/wevj14040104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The massive introduction of electric vehicles as a mobility alternative requires deploying an infrastructure of charging stations for electric cars (ICSEC). This new mobility concept will mitigate the environmental harm caused by the emission of CO2 generated by conventional internal combustion mobility methods. The sustainability of the ICSEC depends not only on the capacity to meet the demand for charging batteries for electric vehicles (EV) but also on an adequate number of public/private charging stations (CS) distributed in a geolocalized area. It is noted that the distribution of CS must respond to a set of real mobility constraints, such as vehicular flow capacity, road capacity, and trajectories. The planning, intelligent location of public charging stations (PCS), and contingency analysis will enable us to study the increase in demand for electrical distribution substations (EDS). Therefore, the present model explains the need to plan the massive introduction of EVs by observing the user's conditions at the trajectory level through finite resource allocation processes, segmentation, and minimum spanning trees, by observing heterogeneous vehicular flow criteria through microscopic analysis, to understand the space-time relationship of vehicular flow in georeferenced scenarios. Consequently, the computational complexity of the model is of the combinatorial type, and it is defined as NP-Hard given the multiple variables and constraints within the transportation problem.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] The Planning of Electric Vehicle Charging Stations in the Urban Area
    Ge Shao-yun
    Feng Liang
    Liu Hong
    Wang Long
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC & MECHANICAL ENGINEERING AND INFORMATION TECHNOLOGY (EMEIT-2012), 2012, 23
  • [42] Planning of Distribution Network with Electric Vehicle Charging Stations
    Liu, Shenghui
    Yang, Dongsheng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 1091 - 1095
  • [43] Planning of electric vehicle charging stations in highway network
    Jia, Long
    Hu, Zechun
    Song, Yonghua
    Zhan, Kaiqiao
    Ding, Huajie
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2015, 39 (15): : 82 - 89
  • [44] Ensemble Learning for Charging Load Forecasting of Electric Vehicle Charging Stations
    Huang, Xingshuai
    Wu, Di
    Boulet, Benoit
    2020 IEEE ELECTRIC POWER AND ENERGY CONFERENCE (EPEC), 2020,
  • [45] MetaProbformer for Charging Load Probabilistic Forecasting of Electric Vehicle Charging Stations
    Huang, Xingshuai
    Wu, Di
    Boulet, Benoit
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 10445 - 10455
  • [46] Electric vehicle charging load prediction considering the orderly charging
    Tian, Jiang
    Lv, Yang
    Zhao, Qi
    Gong, Yucheng
    Li, Chun
    Ding, Hongen
    Yu, Yu
    ENERGY REPORTS, 2022, 8 : 124 - 134
  • [47] Optimal Planning for Electric Vehicle Charging Station Considering the Constraint of Battery Capacity
    Zeng, Ming
    Zhan, Xiaohui
    Li, Yuanfei
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
  • [48] Optimal Infrastructure Planning of Electric Vehicle Charging Stations Using Hybrid Optimization Algorithm
    Awasthi, Abhishek
    Chandra, Dinesh
    Rajasekar, S.
    Singh, Asheesh K.
    Raj, Ajay-D-Vimal
    Perumal, Muruga K.
    2016 NATIONAL POWER SYSTEMS CONFERENCE (NPSC), 2016,
  • [49] A reliable optimal electric Vehicle charging stations allocation
    Abdelaziz, M. A.
    Ali, A. A.
    Swief, R. A.
    Elazab, Rasha
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (07)
  • [50] Estimation of Optimal Locations for Electric Vehicle Charging Stations
    Catalbas, Mehmet Cem
    Yildirim, Merve
    Gulten, Arif
    Kurum, Hasan
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2017 17TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2017,