Deep Learning-Based Real-Time Traffic Sign Recognition System for Urban Environments

被引:6
|
作者
Kim, Chang-il [1 ]
Park, Jinuk [1 ]
Park, Yongju [1 ]
Jung, Woojin [1 ]
Lim, Yong-seok [1 ]
机构
[1] Korea Elect Technol Inst, Seongnam 13509, South Korea
关键词
traffic sign recognition; deep learning; object detection; real-time application; urban road scene;
D O I
10.3390/infrastructures8020020
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A traffic sign recognition system is crucial for safely operating an autonomous driving car and efficiently managing road facilities. Recent studies on traffic sign recognition tasks show significant advances in terms of accuracy on several benchmarks. However, they lack performance evaluation in driving cars in diverse road environments. In this study, we develop a traffic sign recognition framework for a vehicle to evaluate and compare deep learning-based object detection and tracking models for practical validation. We collect a large-scale highway image set using a camera-installed vehicle for training models, and evaluate the model inference during a test drive in terms of accuracy and processing time. In addition, we propose a novel categorization method for urban road scenes with possible scenarios. The experimental results show that the YOLOv5 detector and strongSORT tracking model result in better performance than other models in terms of accuracy and processing time. Furthermore, we provide an extensive discussion on possible obstacles in traffic sign recognition tasks to facilitate future research through numerous experiments for each road condition.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Real-Time Traffic Sign Recognition Based on Efficient CNNs in the Wild
    Li, Jia
    Wang, Zengfu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (03) : 975 - 984
  • [32] Learning-based system for real-time imaging
    Ae, T
    Sakai, K
    Ayaki, H
    Honda, N
    APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING IV, 1999, 3647 : 154 - 163
  • [33] Real-time Detection and Recognition of Live Panoramic Traffic Signs Based on Deep Learning
    Meng, Xiangsong
    Zhang, Xiangli
    Yan, Kun
    Zhang, Hongmei
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 584 - 588
  • [34] CNN Design for Real-Time Traffic Sign Recognition
    Shustanov, Alexander
    Yakimov, Pavel
    3RD INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (ITNT-2017), 2017, 201 : 718 - 725
  • [35] Real-Time Traffic Sign Detection and Recognition on FPGA
    Yalcin, Huseyin
    Irmak, Hasan
    Bulut, Mehmet Mete
    Akar, Gozde Bozdagi
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [36] Deep learning-based object recognition in multispectral satellite imagery for real-time applications
    Gudzius, Povilas
    Kurasova, Olga
    Darulis, Vytenis
    Filatovas, Ernestas
    MACHINE VISION AND APPLICATIONS, 2021, 32 (04)
  • [37] Deep learning-based object recognition in multispectral satellite imagery for real-time applications
    Povilas Gudžius
    Olga Kurasova
    Vytenis Darulis
    Ernestas Filatovas
    Machine Vision and Applications, 2021, 32
  • [38] Real-time traffic sign recognition in three stages
    Zaklouta, Fatin
    Stanciulescu, Bogdan
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2014, 62 (01) : 16 - 24
  • [39] Deep Learning Based IoT System for Real-time Traffic Risk Notifications
    Islam, Sahidul
    Klupka, Seth
    Mohammadi, Ramin
    Jin, Yu-Fang
    Xie, Mimi
    2024 25TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED 2024, 2024,
  • [40] Real-Time Pedestrian Recognition in Urban Environments
    Musleh, Basam
    de la Escalera, Arturo
    Maria Armingol, Jose
    ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2011: SMART SYSTEMS FOR ELECTRIC, SAFE AND NETWORKED MOBILITY, 2011, : 139 - 147