Deep Learning-Based Real-Time Traffic Sign Recognition System for Urban Environments

被引:6
|
作者
Kim, Chang-il [1 ]
Park, Jinuk [1 ]
Park, Yongju [1 ]
Jung, Woojin [1 ]
Lim, Yong-seok [1 ]
机构
[1] Korea Elect Technol Inst, Seongnam 13509, South Korea
关键词
traffic sign recognition; deep learning; object detection; real-time application; urban road scene;
D O I
10.3390/infrastructures8020020
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A traffic sign recognition system is crucial for safely operating an autonomous driving car and efficiently managing road facilities. Recent studies on traffic sign recognition tasks show significant advances in terms of accuracy on several benchmarks. However, they lack performance evaluation in driving cars in diverse road environments. In this study, we develop a traffic sign recognition framework for a vehicle to evaluate and compare deep learning-based object detection and tracking models for practical validation. We collect a large-scale highway image set using a camera-installed vehicle for training models, and evaluate the model inference during a test drive in terms of accuracy and processing time. In addition, we propose a novel categorization method for urban road scenes with possible scenarios. The experimental results show that the YOLOv5 detector and strongSORT tracking model result in better performance than other models in terms of accuracy and processing time. Furthermore, we provide an extensive discussion on possible obstacles in traffic sign recognition tasks to facilitate future research through numerous experiments for each road condition.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Real-Time Traffic Sign Recognition Using Deep Learning
    Shivayogi, Ananya Belagodu
    Dharmendra, Nehal Chakravarthy Matasagara
    Ramakrishna, Anala Maddur
    Subramanya, Kolala Nagaraju
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (01): : 137 - 148
  • [2] Real-time traffic sign recognition based on a general purpose GPU and deep-learning
    Lim, Kwangyong
    Hong, Yongwon
    Choi, Yeongwoo
    Byun, Hyeran
    PLOS ONE, 2017, 12 (03):
  • [3] Real-time Traffic Sign Recognition System with Deep Convolutional Neural Network
    Jung, Seokwoo
    Lee, Unghui
    Jung, Jiwon
    Shim, David Hyunchul
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 31 - 34
  • [4] Real-time embedded system for traffic sign recognition based on ZedBoard
    Farhat, Wajdi
    Faiedh, Hassene
    Souani, Chokri
    Besbes, Kamel
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) : 1813 - 1823
  • [5] Real-time embedded system for traffic sign recognition based on ZedBoard
    Wajdi Farhat
    Hassene Faiedh
    Chokri Souani
    Kamel Besbes
    Journal of Real-Time Image Processing, 2019, 16 : 1813 - 1823
  • [6] Deep Learning-Based Real-Time Multiple-Person Action Recognition System
    Tsai, Jen-Kai
    Hsu, Chen-Chien
    Wang, Wei-Yen
    Huang, Shao-Kang
    SENSORS, 2020, 20 (17) : 1 - 17
  • [7] Real-Time Deep Learning-Based Object Recognition in Augmented Reality
    Egipko, V
    Zhdanova, M.
    Gapon, N.
    Voronin, V.
    Semenishchev, E.
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [8] A Real-Time System For Recognition Of American Sign Language By Using Deep Learning
    Taskiran, Murat
    Killioglu, Mehmet
    Kahraman, Nihan
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 258 - 261
  • [9] Deep Learning-Based Emotion Recognition from Real-Time Videos
    Zhou, Wenbin
    Cheng, Justin
    Lei, Xingyu
    Benes, Bedrich
    Adamo, Nicoletta
    HUMAN-COMPUTER INTERACTION. MULTIMODAL AND NATURAL INTERACTION, HCI 2020, PT II, 2020, 12182 : 321 - 332
  • [10] A GPU-Based Real-Time Traffic Sign Detection and Recognition System
    Chen, Zhilu
    Huang, Xinming
    Ni, Zhen
    He, Haibo
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN VEHICLES AND TRANSPORTATION SYSTEMS (CIVTS), 2014, : 1 - 5