A literature review of fault diagnosis based on ensemble learning

被引:20
|
作者
Mian, Zhibao [1 ,2 ]
Deng, Xiaofei [1 ]
Dong, Xiaohui [1 ]
Tian, Yuzhu [3 ]
Cao, Tianya [1 ]
Chen, Kairan [1 ]
Al Jaber, Tareq [2 ]
机构
[1] Northwest Normal Univ, Sch Comp Sci & Engn, Lanzhou, Peoples R China
[2] Univ Hull, Sch Comp Sci, FoSE, Kingston Upon Hull, England
[3] Northwest Normal Univ, Sch Math & Stat, Lanzhou, Peoples R China
关键词
Ensemble learning; Fault diagnosis; Intelligent maintenance; System reliability; REMAINING USEFUL LIFE; ACOUSTIC-SIGNALS; BEARING FAULT; MACHINERY; BINARY; SYSTEM; CLASSIFIER; FEATURES; NOISE;
D O I
10.1016/j.engappai.2023.107357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] A parallel ensemble optimization and transfer learning based intelligent fault diagnosis framework for bearings
    Tang, Guiting
    Yi, Cai
    Liu, Lei
    Xu, Du
    Zhou, Qiuyang
    Hu, Yongxu
    Zhou, Pengcheng
    Lin, Jianhui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [32] Refrigerant charge fault diagnosis strategy for VRF systems based on stacking ensemble learning
    Zhang, Li
    Cheng, Yahao
    Zhang, Jianxin
    Chen, Huanxin
    Cheng, Hengda
    Gou, Wei
    BUILDING AND ENVIRONMENT, 2023, 234
  • [33] Adaptive ensemble of extreme learning machines and application to fault diagnosis
    Yin, G. (gang.gang88@163.com), 1600, Nanjing University of Aeronautics an Astronautics (33):
  • [34] Combining Unsupervised and Supervised Fault Diagnosis Method with Ensemble Learning
    Wang Jian
    Han Zhiyan
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2935 - 2939
  • [35] A supervised ensemble learning method for fault diagnosis in photovoltaic strings
    Kapucu, Ceyhun
    Cubukcu, Mete
    ENERGY, 2021, 227
  • [36] A Deep Ensemble Learning Model for Rolling Bearing Fault Diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Li, Zhenning
    Liu, Yunpeng
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 133 - 136
  • [37] A Sustainable Fault Diagnosis Approach for Photovoltaic Systems Based on Stacking-Based Ensemble Learning Methods
    Mellit, Adel
    Zayane, Chadia
    Boubaker, Sahbi
    Kamel, Souad
    MATHEMATICS, 2023, 11 (04)
  • [38] Induction Motor Fault Diagnosis Based on Ensemble Classifiers
    Yang, Xueliang
    Yan, Ruqiang
    Gao, Robert X.
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 814 - 818
  • [39] Fault diagnosis based on support vector machine ensemble
    Li, Y
    Cai, YZ
    Yin, RP
    Xu, XM
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3309 - 3314
  • [40] A review on adversarial–based deep transfer learning mechanical fault diagnosis
    Yu Guo
    Ziyi Cheng
    Jundong Zhang
    Bin Sun
    YongKang Wang
    Journal of Big Data, 11 (1)