A literature review of fault diagnosis based on ensemble learning

被引:20
|
作者
Mian, Zhibao [1 ,2 ]
Deng, Xiaofei [1 ]
Dong, Xiaohui [1 ]
Tian, Yuzhu [3 ]
Cao, Tianya [1 ]
Chen, Kairan [1 ]
Al Jaber, Tareq [2 ]
机构
[1] Northwest Normal Univ, Sch Comp Sci & Engn, Lanzhou, Peoples R China
[2] Univ Hull, Sch Comp Sci, FoSE, Kingston Upon Hull, England
[3] Northwest Normal Univ, Sch Math & Stat, Lanzhou, Peoples R China
关键词
Ensemble learning; Fault diagnosis; Intelligent maintenance; System reliability; REMAINING USEFUL LIFE; ACOUSTIC-SIGNALS; BEARING FAULT; MACHINERY; BINARY; SYSTEM; CLASSIFIER; FEATURES; NOISE;
D O I
10.1016/j.engappai.2023.107357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Fault diagnosis in rotating machines based on transfer learning: Literature review
    Misbah, Iqbal
    Lee, C. K. M.
    Keung, K. L.
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [2] Transformer Fault Diagnosis Based on Stacking Ensemble Learning
    Wang, Xue
    Han, Tao
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (12) : 1734 - 1739
  • [3] Fault diagnosis method of PEMFC system based on ensemble learning
    Zhang, Xuexia
    Peng, Lishuo
    He, Fei
    Huang, Ruike
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1501 - 1510
  • [4] Ensemble learning-based HVDC systems fault diagnosis
    Li Q.
    Chen Q.
    Wu J.
    Peng G.
    Huang X.
    Li Z.
    Yang B.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (16): : 168 - 178
  • [5] Wear Fault Diagnosis of Aeroengines Based on Broad Learning System and Ensemble Learning
    Wang, Mengmeng
    Ge, Quanbo
    Jiang, Haoyu
    Yao, Gang
    ENERGIES, 2019, 12 (24)
  • [6] Review on Deep Learning Based Fault Diagnosis
    Wen Chenglin
    Lu Feiya
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (01) : 234 - 248
  • [7] Imbalanced fault diagnosis based on semi-supervised ensemble learning
    Chuanxia Jian
    Yinhui Ao
    Journal of Intelligent Manufacturing, 2023, 34 : 3143 - 3158
  • [8] Fault Diagnosis by Using Selective Ensemble Learning Based on Mutual Information
    Liu, Tian-Yu
    Li, Guo-Zheng
    OPTIMIZATION AND SYSTEMS BIOLOGY, PROCEEDINGS, 2008, 9 : 191 - +
  • [9] Imbalanced fault diagnosis based on semi-supervised ensemble learning
    Jian, Chuanxia
    Ao, Yinhui
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (07) : 3143 - 3158
  • [10] Industrial fault diagnosis based on diverse variable weighted ensemble learning
    Jian, Chuanxia
    Ao, Yinhui
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 718 - 735