Obstacle avoidance for a robotic navigation aid using Fuzzy Logic Controller-Optimal Reciprocal Collision Avoidance (FLC-ORCA)

被引:4
|
作者
Mohd Romlay, Muhammad Rabani [1 ]
Mohd Ibrahim, Azhar [1 ]
Toha, Siti Fauziah [1 ]
De Wilde, Philippe [2 ]
Venkat, Ibrahim [3 ]
Ahmad, Muhammad Syahmi [1 ]
机构
[1] Int Islamic Univ Malaysia IIUM, Dept Mechatron Engn, Jalan Gombak, Kuala Lumpur 53100, Malaysia
[2] Univ Kent, Div Nat Sci, Canterbury, Kent, England
[3] Univ Teknol Brunei, Sch Comp & Informat, Tungku Highway, Gadong BE-1410, Brunei
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 30期
关键词
Obstacle avoidance; Fuzzy logic; Optimal reciprocal collision avoidance; Navigation aid; Electronic travel aid; ARTIFICIAL-INTELLIGENCE TECHNIQUES; INDOOR; SYSTEM; TEMPERATURES; PREDICTION; HYBRID;
D O I
10.1007/s00521-023-08856-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robotic Navigation Aids (RNAs) assist visually impaired individuals in independent navigation. However, existing research overlooks diverse obstacles and assumes equal responsibility for collision avoidance among intelligent entities. To address this, we propose Fuzzy Logic Controller-Optimal Reciprocal Collision Avoidance (FLC-ORCA). Our FLC-ORCA method assigns responsibility for collision avoidance and predicts the velocity of obstacles using a LiDAR-based mobile robot. We conduct experiments in the presence of static, dynamic, and intelligent entities, recording navigation paths, time taken, angle changes, and rerouting occurrences. The results demonstrate that the proposed FLC-ORCA successfully avoids collisions among objects with different collision avoidance protocols and varying liabilities in circumventing obstacles. Comparative analysis reveals that FLC-ORCA outperforms other state-of-the-art methods such as Improved A* and Directional Optimal Reciprocal Collision Avoidance (DORCA). It reduces the overall time taken to complete navigation by 16% and achieves the shortest completion time of 1 min and 38 s, with minimal rerouting (1 occurrence) and the smallest angle change (12 & DEG;). Our proposed FLC-ORCA challenges assumptions of equal responsibility and enables collision avoidance without pairwise manoeuvres. This approach significantly enhances obstacle avoidance, ensuring safer and more efficient robotic navigation for visually impaired individuals.
引用
收藏
页码:22405 / 22429
页数:25
相关论文
共 50 条
  • [1] Obstacle avoidance for a robotic navigation aid using Fuzzy Logic Controller-Optimal Reciprocal Collision Avoidance (FLC-ORCA)
    Muhammad Rabani Mohd Romlay
    Azhar Mohd Ibrahim
    Siti Fauziah Toha
    Philippe De Wilde
    Ibrahim Venkat
    Muhammad Syahmi Ahmad
    Neural Computing and Applications, 2023, 35 : 22405 - 22429
  • [2] Cooperative mobile robots with obstacle and collision avoidance using fuzzy logic
    Dadios, EP
    Maravillas, OA
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2002, : 75 - 80
  • [3] Fuzzy Logic Controller for Obstacle Avoidance of Mobile Robot
    Singh, Rajmeet
    Bera, Tarun Kumar
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (01) : 51 - 62
  • [4] Fuzzy controller for obstacle avoidance in robotic manipulators using ultrasonic sensors
    Llata, JR
    Sarabia, EG
    Arce, J
    Oria, JP
    1998 5TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL - PROCEEDINGS: AMC '98 - COIMBRA, 1998, : 647 - 652
  • [5] Fuzzy Logic Obstacle Avoidance Controller for a Mobile Robot using LiDAR
    Hanana, Sana
    Krichen, Najla
    Masmoudi, Mohamed Slim
    Masmoudi, Mohamed
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 387 - 390
  • [6] VR-ORCA: Variable Responsibility Optimal Reciprocal Collision Avoidance
    Guo, Ke
    Wang, Dawei
    Fan, Tingxiang
    Pan, Jia
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 4520 - 4527
  • [7] Car navigation and collision avoidance system with fuzzy logic
    Riid, A
    Pahhomov, D
    Rüstern, E
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1443 - 1448
  • [8] Unmanned Underwater Vehicle Navigation and Collision Avoidance using Fuzzy Logic
    David, Kanny Krizzy A.
    Vicerra, Ryan RhayP.
    Bandala, Argel A.
    Lim, Laurence A. Gan
    Dadios, Elmer P.
    2013 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2013, : 126 - 131
  • [9] Object Based Navigation of Mobile Robot with Obstacle Avoidance using Fuzzy Controller
    Norouzi, M.
    Karambakhsh, A.
    Namazifar, M.
    Savkovic, B.
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 169 - +
  • [10] Industrial robot navigation and obstacle avoidance employing fuzzy logic
    Zavlangas, PG
    Tzafestas, SG
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2000, 27 (1-2) : 85 - 97